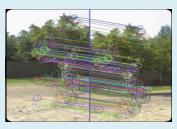
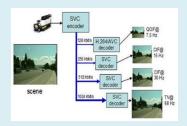


# Advanced Multimedia Signal Processing (#1: Introduction)



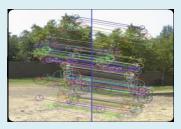

**2017. Spring** 


Prof. Byung-Gyu Kim

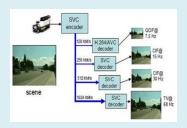
Dept. of IT Engineering, Soomyung Women's University











# **Contents**

- Introduction to this lecture
- What is "Multimedia"?
- Why We Need Data Compression?









# **Contents**

- Introduction to this lecture
- What is "Multimedia"?
- Why We Need Data Compression?

#### Introduction to this lecture (1)

- ❖ Info. of advisory professor (담당 교수)
  - Name: Byung-Gyu Kim (김병규)
  - Office: Saehim Building Room No. 102
  - Phone : 2077-7293, (Portable: 010-5037-3452)
  - E-mail: <a href="mailto:bg.kim@ieee.org">bg.kim@ieee.org</a>, <a href="mailto:bg.kim@ieee.org">bg.kim@ieee.org</a>, <a href="mailto:bg.kim@ieee.org">bg.kim@sm.ac.kr</a>
  - Available office time :
    - Tues./Thurs. 12:40-14:00, Wed. 10:00-11:20
- Website for this class
  - VICL homepage (<a href="http://vicl.sookmyung.ac.kr">http://vicl.sookmyung.ac.kr</a>)
    - "Advanced IT Programming" board



#### Introduction to this lecture (2)

- What will we talk about in this lecture?
  - What is multimedia (basic concept)?
  - Video signal processing
  - Basic Video Coding (Compression) concepts and techniques
  - Video coding standards from H.261 to H.265 (H.26x family)

#### ❖ Aims:

- Understanding what is a concept of video signal processing.
- Learning various kinds of video signal processing.
- Getting a sense of basic video processing and compression schemes.
- Obtaining a skill to design your own study or research project if you have an interest on video processing (coding) field.



#### Introduction to this lecture (3)

- ❖ The detailed course of this lecture
  - Tutorial lectures
    - Video processing techniques
    - Detailed modules for video compression (coding)
    - Some signal transforms for video compression
    - If possible, the advanced techniques (H.265 video) will be discussed shortly.
  - Term projects
    - Proposal
      - Some topics about video coding will be given in middle of semester.
    - Final presentation
      - Final reports of your topics should be submitted and presented.



#### Introduction to this lecture (4)

- The final achievements of this course (end of this semester)
  - To understand video processing and coding concept.
  - To provide useful information for each personal study.
  - To make use of some concepts for your own research.
  - If possible, get enough experience for video processing and coding.

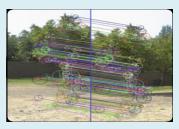


### Introduction to this lecture (5)

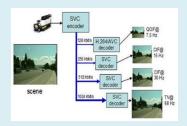
- ❖ The Evaluation of this lecture
  - Basic rule:

Midterm Exam. : 30%
Presentation skill : 10%
Attendance : 10%
Homework : 10%
Course Project : 40%






#### Introduction to this lecture (6)

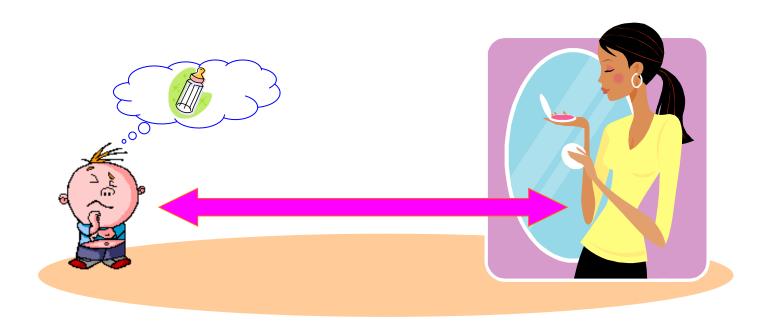

- ❖ The Textbook and lecture materials
  - Summarized PPT.
  - Textbook: "H.264 and MPEG-4 video compression" (by Iain E. G. Richardson, Wiley, 2003)







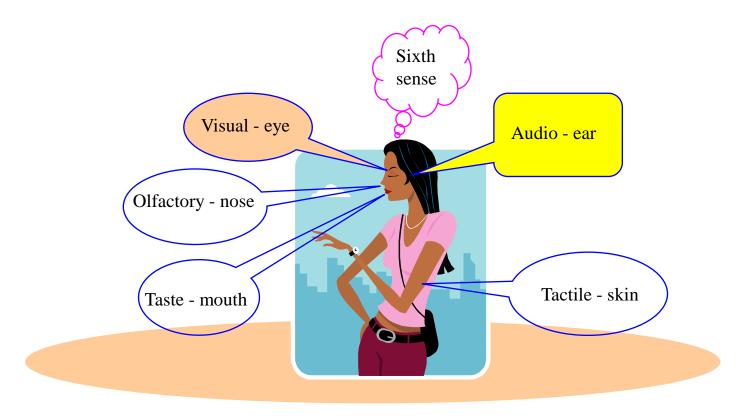





# **Contents**

- Introduction to this lecture
- What is "Multimedia"?
- Why We Need Data Compression?

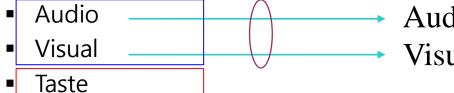
# What is "Multimedia"? (1)


- Multi-Media
  - What is "Media"?
    - Media is a tool for exchanging people's mind/thought and information, between people.





#### What is "Multimedia"? (2)

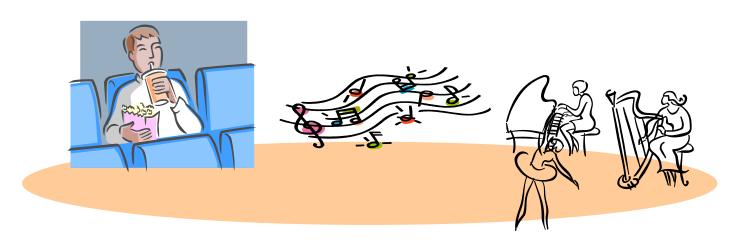

- What kinds of "Media"?
  - Most of system that have been studying/developing are imitators based on the senses of human being.
- What kinds of the senses of human being?





### What is "Multimedia"? (3)

Sensors of Human Body

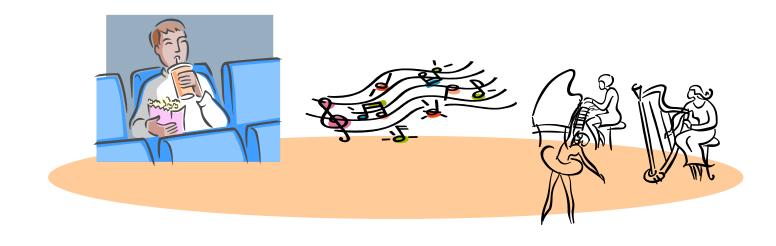



- laste

OlfactoryTactile

Audio perception model Visual perception model

Biological signal processing/transportation

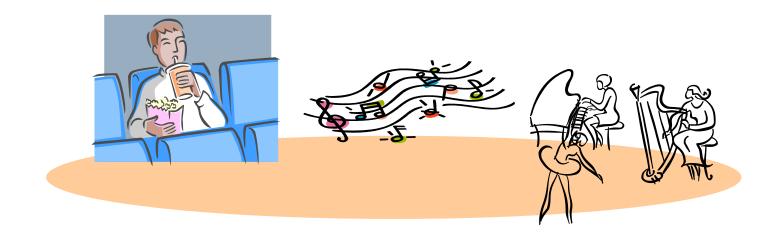





#### What is "Multimedia"? (4)

#### Multi-Media

- Multiple media, not separated.
  - Containing more than two different media types
  - Text, speech, music, audio, image, graphics, video, and many more....
  - Giving the useful and additional information by the given media.

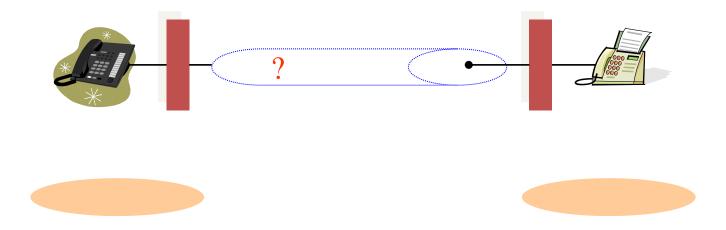





#### What is "Multimedia"? (5)

#### Multi-Media

- Multiple media, not separated.
  - Containing more than two different media types
  - Text, speech, music, audio, image, graphics, video, and many more....
  - Giving the useful and additional information by the given media.

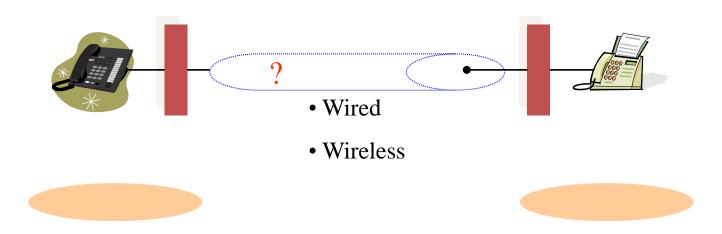





### Some Useful Definitions (1)

#### Network

- Layered/electrical devices to give and take information between end users (systems).
  - Channel
  - Bandwidth

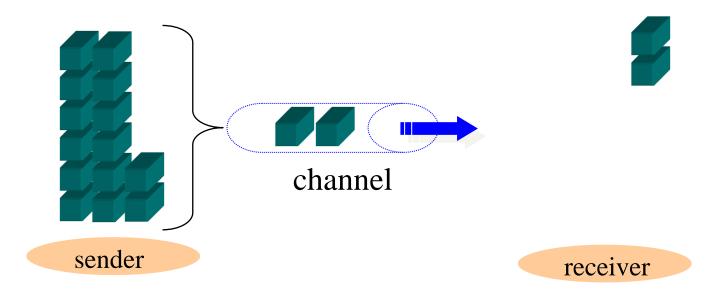





### Some Useful Definitions (2)

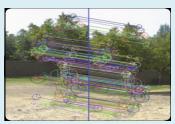
#### Channel:

- Physical path between end systems (users).
  - Different characteristics as kind of medium.
    - Copper wire vs. Optical fiber.
    - Wired vs. wireless.

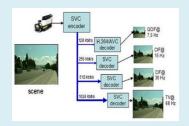





## Some Useful Definitions (3)


#### \* Bandwidth:

- Transmission capacity of data for the given time.
  - Bits/second (bps)
    - 1 bit = 0 or 1
    - 1 byte = 8 bits, 1 K bits = 1024 bits, 1 M bits = 1024 K bits













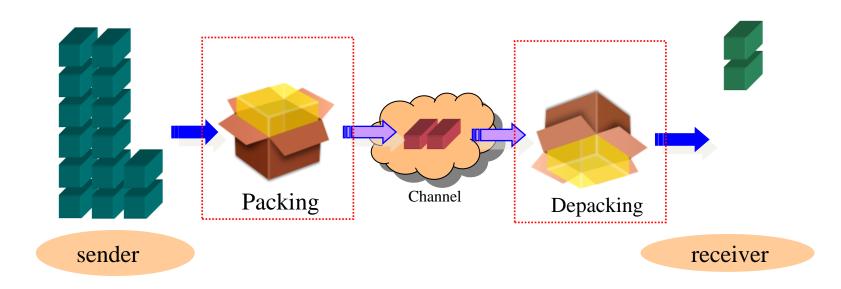

# **Contents**

- Introduction to this lecture
- What is "Multimedia"?
- Why We Need Data Compression?

#### Why We Need Data Compression? (0)

- ❖ In aspect of data communication, all signals are delivered through channels such as Phone line, copper, optical fiber and air (Physical path).
  - Problem:
    - Bandwidth/sec. is always limited (not infinite).
    - But people want to send or receive the desired data faster and faster.
    - Data storage aspect:
      - Modern data processing applications require storage of large volumes of data.
      - Compressing a file to half of its original size is equivalent to doubling the capacity of the storage medium.




# Why We Need Data Compression? (1)

| Multimedia Data          | Size/Duration                       | Bits/Pixel or<br>Bits/Sample | Uncompressed<br>Size<br>(B for bytes) | Transmission<br>Bandwidth<br>(b for bits) | Transmission<br>Time (using a<br>28.8K Modem) |
|--------------------------|-------------------------------------|------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------|
| A page of text           | 11" x 8.5"                          | Varying resolution           | 4-8 KB                                | 32-64 Kb/page                             | 1.1 - 2.2 sec                                 |
| Telephone quality speech | 10 sec                              | 8 bps                        | 80 KB                                 | 64 Kb/sec                                 | 22.2 sec                                      |
| Grayscale Image          | 512 x 512                           | 8 bpp                        | 262 KB                                | 2.1 Mb/image                              | 1 min 13 sec                                  |
| Color Image              | 512 x 512                           | 24 bpp                       | 786 KB                                | 6.29 Mb/image                             | 3 min 39 sec                                  |
| Medical Image            | 2048 x 1680                         | 12 bpp                       | 5.16 MB                               | 41.3 Mb/image                             | 23 min 54 sec                                 |
| SHD Image                | 2048 x 2048                         | 24 bpp                       | 12.58 MB                              | 100 Mb/image                              | 58 min 15 sec                                 |
| Full-motion Video        | 640 x 480, 1 min<br>(30 frames/sec) | 24 bpp                       | 1.66 GB                               | 221 Mb/sec                                | 5 days 8 hrs                                  |



# Why We Need Data Compression? (2)

- People want to see or get more information at the given network condition (limited bandwidth).
  - Better quality of service in terms of real-time.
  - More data and faster, more information.
  - Need to modify or process the original data.

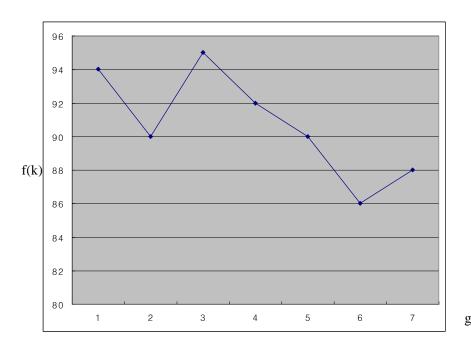




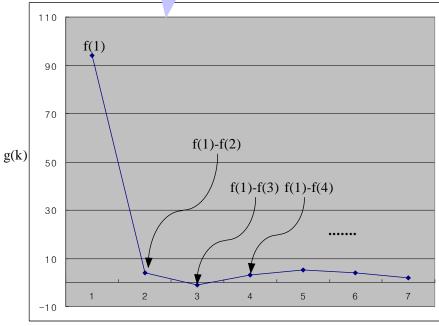
### Why We Need Data Compression? (3)

- Data Compression Techniques
  - Text and documents
    - Zip (WinZip, AlZip), TAR, ARJ, and so on.
  - Voice (Speech) and music signals
    - Wave, MP3, AAC, AC-3, AMR, OGG
  - Still images
    - JPEG, JPEG 2000, MJPEG
  - Videos (moving)
    - H.26x series and MPEG-1, MPEG-2, MPEG-4, WMV, DIVIX




#### **Data Compression: Motivation (1)**

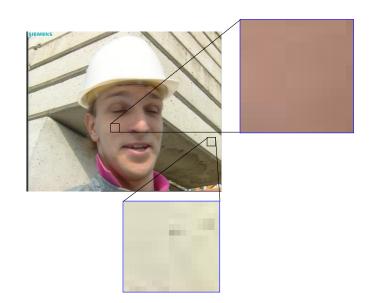
- How to reduce the original image data?
  - Most data (successive in terms of time) from nature has redundancy (correlation).
    - There is more data than the actual information contained in the data.
    - Squeezing out the excess data (information) amounts to compression.
    - However, un-squeezing is necessary to be able to figure out what the data means.




# **Data Compression: Motivation (2)**

❖ Let's see a simple example...!!!




Signal differencing between samples (data)





#### **Data Compression: Motivation (3)**

- What form of data redundancy (correlation) in the original image data?
  - Very high correlation between neighboring pixels (data) within small area (block).
  - Remove statistical redundancy from data.
  - Encode common values with short codes, uncommon values with longer codes.
     Huffman Code





# **Summary of Todays' Lecture..!!!**

- Introduction of this lecture
- ❖ What is "Multimedia"?
- Some Useful Definitions
  - Network
  - Channel
  - Bandwidth
- Why We Need Data Compression?
- Data Compression
  - How to (Basic concept)?





# Thank you for your attention.!!! QnA

http://vicl.sookmyung.ac.kr