Email Login
News | Research | DeepLearning | Seminar | Q&A

[CFP] DeepSpatial 2019

GreatMind 2019.08.21 16:32 조회 수 : 39

Call For Papers

1st IEEE ICDM Workshop on Deep Learning for Spatiotemporal Data, Algorithms, and Systems (DeepSpatial 2019)

Co-located with 19th IEEE International Conference on Data Mining (ICDM 2019), Beijing, China

The significant advancements in software and hardware technologies stimulated the prosperities of the domains in spatial computing and deep learning algorithms, respectively. On one hand, advances in scalable and expressive neural network architectures and GPUs have paved the way to the recent breakthroughs in the deep learning field which has exhibited outstanding performance in handling data in space and time in specific domains such as image, audio, and video. On the other hand, the development and popularity of techniques in various domains such as remote sensing, online social media platforms, and bioengineering have enabled and accumulated large scale of spatiotemporal data over the years, which in turn has led to unprecedented opportunities and prerequisites for the discovery of macro- and micro- spatiotemporal phenomena accurately and precisely.

Nevertheless, further developments of spatial/spatiotemporal computing and deep learning call for the synergistic techniques and the collaborations between different communities, as evidenced by the recent momentum in both domains. First, fast-increasing large-scale and complex-structured spatiotemporal data requires the investigation and extension toward more scalable and powerful models than traditional ones in domains such as computational geography and spatial statistics, which has been evidenced by the fast-increasing research work on spatiotemporal data using deep learning techniques in recent few years in the spatial data computing community. On the other hand, recently deep learning techniques are evolving beyond regular grid-based (e.g., images), tree-based (e.g., texts), and sequence-based (e.g., audio) data to more generic or irregular data in space and time (e.g., in transportation, geomorphology, and protein folding), which calls for the expertise in the domains such as spatial statistics, geodesy, geometry, graphics, and geography.

The complementary strengths and challenges between spatiotemporal data computing and deep learning in recent years suggest urgent needs to bring together the experts in these two domains in prestigious venues, which is still missing until now. This workshop will provide a premium platform for both research and industry to exchange ideas on opportunities, challenges, and cutting-edge techniques of deep learning in spatiotemporal data, algorithms, and systems. Full research papers and short position papers will be accepted under the topics include, but not limited to, the following two broad categories:

Novel Deep Learning Techniques for Spatial and Spatio-Temporal Data:

  • Convolutional, recurrent, and deep neural network techniques.
  • Representation learning and embedding based on deep learning
  • Scalable deep learning algorithms for large data.
  • Interpretable deep learning for spatial-temporal data.
  • Learning representation on heterogeneous networks, knowledge graphs
  • Deep generative models, adversarial machine learning
  • Deep reinforcement learning
  • Theory of deep learning for spatio-temporal data

Novel Deep Learning Applications for Spatial and Spatio-Temporal Data:

  • Remote sensing and land cover change detection/classification
  • Trajectory/mobility data mining and prediction
  • Spatial crowdsourcing
  • Location-based social network data analytics, event prediction and forecasting
  • Smart cities and ride-sharing (e.g., taxi demand forecasting)
  • Other applications of deep learning

Workshop Co-Chairs
Xun Zhou, University of Iowa

Liang Zhao, George Mason University

Feng Chen, SUNY, Albany

Program Committee

  • Wei Wang, (Microsoft Research) 
    Ray Dos Santos, (Army Corps of Engineers) 
    Arnold Boedihardjo, (DigitalGlobe) 
    Chao Zhang, (Georgia Tech) 
    Yanjie Fu, (MST) 
    Xuchao Zhang, (NEC Lab) 
    Shahriar Hossain (University of Texas, El Paso) 
    Lingfei Wu (IBM Watson) 
    Yanfang Ye (Case Western Reserve University) 
    Yanhua Li (WPI) 
    Petko Bogdanov (UAlbany) 
    Yinghui Wu (WSU) 
    Zhe Jiang (University of Alabama)

Important Dates:
Paper Submission: August 24, 2019
Notification of Acceptance: September 17, 2019 
Camera-ready Papers: October 1, 2019
Workshop Date: November 8, 2019

Submission Instructions:
The workshop will encourage the submissions of both full research papers presents concrete research techniques and experimental results, as well as short position papers that identify and discuss the grand challenges and research opportunities on the topics of interests. All the workshop events will give enough time for attendant discussions. In particular, the workshop will consist of a series of the following events:

  • Full research papers presentations: 25 minutes including 15 minutes for author presentation and 10 minutes for attendant discussion about the work.
  • Short position papers presentations: 20 minutes including 10 minutes for author presentation and 10 minutes for attendant discussion about the proposed vision.

All manuscripts should be submitted in PDF format and formatted using the IEEE Proceedings templates available at:

All the papers should be submitted through our online system here.

One author per accepted workshop contribution is required to register for the conference and workshop, to attend the workshop and to present the accepted submission. Otherwise, the accepted submission will not appear in the published workshop proceedings or in the workshop proceedings.

Feng Chen(SUNY, Albany): 

Xun Zhou (University of Iowa):

Liang Zhao (George Mason University):

번호 제목 글쓴이 날짜 조회 수
158 [CFP] Workshop on Computational Aspects of Deep Learning at ICPR 2020 GreatMind 2020.10.09 0
157 [CFP] IEEE ICME 2021, China! GreatMind 2020.10.09 1
156 [CFP] IEEE APCCAS 2020 GreatMind 2020.08.29 10
155 [CFP] IEEE OJSP Special Issue on Applied AI and Machine Learning for Video Coding and Streaming GreatMind 2020.08.28 13
154 [CFP] ICT Congress 2021 - London, UK GreatMind 2020.08.13 132
153 [CFP] IEEE/ACM TASLP Special Issue on Eighth Dialog System Technology Challenge GreatMind 2020.08.08 26
152 [CFP] IEEE ICASSP 2021, city of Toronto, Canada GreatMind 2020.08.08 248
151 [Call for Participating] VDAT2020 GreatMind 2020.07.17 23
150 [CFP] Applied Sciences Special Issue "Artificial Intelligence for Multimedia Signal Processing" GreatMind 2020.06.10 24
149 [CFP] Sensors SI on "Perceptual Deep Learning in Image Processing and Computer Vision" GreatMind 2020.06.10 16
148 [CFP] EAI WiCON 2020 - 13th EAI International Wireless Internet Conference...!!! GreatMind 2020.04.09 210
147 [CFP] IEEE MLSP 2020 GreatMind 2020.02.14 115
146 [CFP] IEEE SPM Special Issue on Signal Processing for Neurorehabilitation and Assistive Technologies GreatMind 2020.01.28 20
145 [CFP] The 16-th MITA 2020 (Ostrava CZ REpublic) file GreatMind 2020.01.07 29
144 [CFP] IEEE ICME 2020 | Call for Papers Deadline Extended GreatMind 2019.11.28 358
143 [CFP] IEEE SPM Special Issue on Innovation Starts with Education GreatMind 2019.11.18 26
142 [CFP] IEEE JSTSP Special Issue on Deep Learning for Image/Video Restoration and Compression GreatMind 2019.11.18 332
141 [CFP] IEEE JSTSP Special Issue on Data Driven Media Authentication and Forensics GreatMind 2019.11.15 32
» [CFP] DeepSpatial 2019 GreatMind 2019.08.21 39
139 [CFP] IEEE TBioCAS Special Issue on AI-based Biomedical Circuits and Systems Manuscripts now due 1 September 2019 GreatMind 2019.08.19 930