Email Login
Community
News | Research | DeepLearning | Seminar | Q&A

IEEE Signal Processing Magazine
Call for Papers

Special Issue on Deep Learning for Visual Understanding

We are witnessing a revolution in machine learning with the reinvigorated usage of neural networks in deep learning, which promises a solution to cognitive tasks that are easy for humans to perform but hard to describe formally. It is intended to allow computers to acquire knowledge directly from data without the need for human to specify, and model the inherent problem in terms of a layered composition of simpler concepts making it possible to express complex problems by elementary operators. By not relying on handcrafted features, hard-coded knowledge and showing the ability to regress intricate objective functions, deep learning methods are now employed in a broad spectrum of applications from image classification to speech recognition. Deep learning achieves exceptional power and flexibility by learning to represent the task as a nested hierarchy of layers, with more abstract representations computed in terms of less abstract ones. The current resurgence is a result of the breakthroughs in efficient layer-wise training, availability of big datasets, and faster computers. Thanks to the simplified training of very deep architectures, today we can provide these algorithms with the resources they need to succeed.

A number of challenges are being raised and pursued. For instance, many deep learning algorithms have been designed to tackle supervised learning problem for a wide variety of tasks, and how to reliably solve unsupervised learning problems in a similar degree of success is an important issue to address. Another key research area is to work successfully with smaller datasets, focusing on how we can take advantage of large quantities of unlabeled examples with a few labeled samples. Deep agents may play a more significant role in hybrid decision systems where other machine learning techniques are used to address the reasoning, bridging the gap between data and application decisions. We expect deep learning to be applied to increasingly multi-modal problems with more structure in the data, opening application domains in robotics and data mining.

This special issue in the high-impact IEEE Signal Processing Magazine seeks to provide a venue accessible to a wide and diverse audience to survey the recent research R&D advances in learning, including deep learning and beyond. Interested authors are asked to prepare a white paper first based on the instruction and schedule outlined below.

Topics of Interest include (but are not limited to):

  • Advanced deep learning techniques for supervised learning
  • Deep learning for unsupervised & semi-supervised learning
  • Online, reinforcement, incremental learning by deep models
  • Domain adaptation and transfer learning with deep networks
  • Deep learning for spatiotemporal data and dynamic systems
  • Visualization of deep features
  • New zero- and one-shot learning techniques
  • Advanced hashing and retrieval methods
  • Software and specialized hardware for deep learning
  • Novel applications and experimental activities

White papers are required, and full articles are invited based on the review of white papers. The white paper format is up to 4 pages in length, including proposed article title, motivation and significance of the topic, an outline of the proposed paper, and representative references; an author list, contact information and short bios should also be included. Articles submitted to this issue must be of tutorial and overview/survey nature and in an accessible style to a broad audience, and have a significant relevance to the scope of the special issue. Submissions should not have been published or under review elsewhere, and should be made online at http://mc.manuscriptcentral.com/sps-ieee. For submission guidelines, visit http://signalprocessingsociety.org/publications-resources/ieee-signal-processing-magazine/information-authors-spm

Guest Editors:
Prof. Fatih Porikli, Australian National University, fatih.porikli@anu.edu.au 
Dr. Shiguang Shan, Chinese Academy of Sciences, sgshan@ict.ac.cn
Prof. Cees Snoek, University of Amsterdam, cgmsnoek@uva.nl
Dr. Rahul Sukthankar, Google, rahulsukthankar@gmail.com
Prof. Xiaogang Wang, Chinese University of Hong Kong, xgwang@ee.cuhk.edu.hk

Note: While this special issue will focus on visual domain, the IEEE Signal Processing Magazine welcomes high-quality accessible articles (through its feature or column article format as appropriate) covering significant advances in learning on a variety of other domains, such as speech and natural language processing, and data analytics in recommendation, biomedical and other applications. Interested authors for non-visual domains are encouraged to contact the Editor-in-Chief, Prof. Min Wu, at minwu@umd.edu.

번호 제목 글쓴이 날짜 조회 수
98 [CFP] 019 IEEE ICCE - Las Vegas - January 11-13, 2019 GreatMind 2018.04.02 142
97 [Journal issue] Pattern Recognition Letters Sept. 2017. GreatMind 2017.08.28 142
96 AR games come to Google's Project Tango ..!!!! 관리자 2016.03.31 142
95 [Journal issue] Pattern Recognition Letters: Alert 15 June-21 June GreatMind 2016.06.22 140
94 [CFP] ICT Congress 2021 - London, UK GreatMind 2020.08.13 139
93 [Journal Issue] Pattern Recognition: Alert 8 October-14 October GreatMind 2016.10.17 134
92 [Journal Issue] Journal of Visual Communication and Image Representation: Alert 12 September-18 September GreatMind 2016.09.19 132
91 [Journal Issue] ETRI Journal, Vol. 38, No. 2, Apr. GreatMind 2016.04.09 131
90 [CFP] JETCAS Special Issue on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications GreatMind 2017.08.28 130
89 [CFP] IEEE TCSVT - Special Issue on Deep Learning for Visual Surveillance GreatMind 2016.09.30 129
88 [CFP] GlobalSIP 2017 GreatMind 2017.02.22 128
87 [CFP] IEEE TFS - FUZZIEEE 2019 GreatMind 2019.04.05 125
86 [Journal Issue] Journal of Real-Time Image Processing, Vol. 13, Issue 1 GreatMind 2017.04.13 122
85 [Journal issue] Pattern Recognition: Alert 20 May-26 May GreatMind 2016.05.27 122
84 Data Compression Conference (DCC), Snowbird UT, Advance Program..!!! GreatMind 2018.02.12 118
83 [CFP] IEEE MLSP 2020 GreatMind 2020.02.14 116
82 [CFP] IEEE ISGT Asia 2016, Melbourne, Australia GreatMind 2016.04.21 116
81 [CFP] Call for Proposals ICIP 2021 GreatMind 2016.05.26 115
80 [CFP] Joint Conferences on Security, Networks, Cyber-physical Systems, & IoT (July 25-28, 2016, Las Vegas, USA) GreatMind 2016.04.22 114
79 [CFP] IEEE ICASSP 2017 Call for Papers - Paper Submission Open GreatMind 2016.08.26 112