
Visual Intelligence Theory
(#13: Keras-based Convolutional Neural Network Practice-Part 8)

Transfer Learning#2 – Refinement (Fine-tuning)

2023 Fall

Prof. Byung-Gyu Kim
Intelligent Vision Processing Lab. (IVPL)

http://ivpl.sookmyung.ac.kr
Dept. of IT Engineering, Sookmyung Women’s University

E-mail: bg.kim@ivpl.sookmyung.ac.kr

2

Goal of this lecture

❖ Understanding what is the transfer learning

▪ Transfer learning as refinement (Fine-tuning)

▪ How to implement the transfer learning using refinement (Fine-tuning)

▪ Actual practice

• Transfer Learning-Refinement (Fine-tuning)

Contents

4

Transfer Learning (1)

❖ What is “Transfer Learning”?

▪ When a new object recognition or classification is required using the previously learned
(trained) object identification model.

EX) How to create an automated computer vision application that can distinguish

between “kinds of foods”. Which way is the best????

5

Transfer Learning (2)

▪ Two ways:

1) New model generation (New training)

2) Utilize the pre-trained model to get some results

6

Transfer Learning (3) – Fine-tuning : using Keras

❖ Transfer Learning is composed of:

1) Taking a network pre-trained on a dataset.

• Utilize the robust, discriminative filters learned by state-of-the-art networks on challenging
datasets (such as ImageNet or COCO).

2) And utilizing it to recognize image/object categories it was not trained on.

• then apply these networks to recognize objects the model was never trained on.

7

Transfer Learning (4) – Fine-tuning : using Keras

❖ Two types of transfer learning in the context of deep learning:

1) Transfer learning via feature extraction

2) Transfer learning via fine-tuning
In feature extraction, we treat the pre-trained network as

an arbitrary feature extractor, allowing the input image

to propagate forward, stopping at pre-specified layer,

and taking the outputs of that layer as your features.

Fine-tuning, on the other hand, requires that we update

the model architecture itself by removing the previous

fully-connected layer heads, providing new, freshly

initialized ones, and then training the new FC layers to

predict our input classes.

8

Transfer Learning (5) – Fine-tuning : using Keras

❖ Refinement (Fine-tuning) Approach
▪ Fine-tuning requires that we not only update the CNN architecture but also re-train it to

learn new object classes.

❖ Fine-tuning Process:
1) Remove the fully connected nodes at the end of the network (i.e., where the actual class label

predictions are made).

2) Replace the fully connected nodes with freshly initialized ones.

3) Freeze earlier CONV layers earlier in the network (ensuring that any previous robust features

learned by the CNN are not destroyed).

4) Start training, but only train the FC layer heads.

5) Optionally unfreeze some/all of the CONV layers in the network and perform a second pass

of training.

9

Transfer Learning (5) – Fine-tuning : using Keras

❖ Refinement (Fine-tuning) Approach
▪ 1) Datasets

• The dataset consists of 16,643 images belonging to 11 major food categories:
(https://mmspg.epfl.ch/downloads/food-image-datasets/) curated by the Multimedia Signal Processing
Group (MSPG) of the Swiss Federal Institute of Technology.

(You can use FTP client program to download Food-11 dataset.)

[the Food-11 dataset]

https://mmspg.epfl.ch/downloads/food-image-datasets/

10

Transfer Learning (6) – Fine-tuning : using Keras

▪ 2) Train the CNN, first..!!!

• Deep neural networks trained on large-scale datasets such as ImageNet and COCO have proven to
be excellent at the task of transfer learning.

• These networks learn a set of rich, discriminative features capable of recognizing 100s to 1,000s of object
classes — it only makes sense that these filters can be reused for tasks other than what the CNN was
originally trained on (VGG, ResNet, or Inception).

The original

VGG16 network

architecture

Removing the FC layers

from VGG16 and instead

of returning the final

POOL layer→ Feature

extractor

[Feature extractor] [Refinement (Fine-tuning)]

11

Transfer Learning (7) – Fine-tuning : using Keras

▪ 3) We are going to perform network surgery and modify the actual architecture so that we can
re-train parts of the network.

• Remove the original fully connected (FC) networks.

• Build a new fully connected (FC) networks and place it on top of the original architecture (right of
the below figure).

The original

VGG16 network

architecture

Removing the FC layers

from VGG16 and instead

of returning the final

POOL layer→ Feature

extractor

[Feature extractor] [Refinement (Fine-tuning)]

However, there is a problem:

Our CONV layers have already learned rich,

discriminative filters while our FC layers are brand

new and totally random.

12

Transfer Learning (8) – Fine-tuning : using Keras

▪ 4) By (ironically) “freezing” all layers in the body of the network as depicted in Figure (left).
• Freezing Layers: retain the feature weights of convolution networks

– Training data is forward propagated through the network as we usually would; however, the backpropagation is
stopped after the FC layers, which allows these layers to start to learn patterns from the highly discriminative
CONV layers.

13

Transfer Learning (9) – Fine-tuning : using Keras

▪ 4) By (ironically) “freezing” all layers in the body of the network as depicted in Figure (left).
• In some cases, we may decide to never unfreeze the body of the network as our new FC head may

obtain sufficient accuracy.

• However, for some datasets it is often advantageous to allow the original CONV layers to be modified
during the fine-tuning process as well (Figure, right).

14

Transfer Learning (10) – Fine-tuning : using Keras

▪ 5) After the FC head has started to learn patterns in our dataset, we can pause training,
unfreeze the body, and continue training, but with a very small learning rate — we do not
want to alter our CONV filters dramatically.

• Training is then allowed to continue until sufficient accuracy is obtained.

15

Transfer Learning (11) – Fine-tuning : Actual Practice – Foods classification (1)

❖ Project structure

dataset/ directory, while empty
now, will soon contain the Food-11
images in a more organized form.
output/ directory will house our

extracted features (stored in three

separate .csv files).

•pyimagesearch/config.py : Our custom configuration file will help us

manage our dataset, class names, and paths. It is written in Python
directly so that we can use os.path to build OS-specific formatted

file paths directly in the script.
•build_dataset.py : Using the configuration, this script will create an

organized dataset on disk, making it easy to extract features from to

dataset directory.

•predict.py : to make predictions on sample images using
our fine-tuned network.
•train.py : Our training script will perform fine-tuning.

16

Transfer Learning (12) – Fine-tuning : Actual Practice – Foods classification (2)

▪ config.py

import the necessary packages
import os

initialize the path to the *original* input directory of
images
ORIG_INPUT_DATASET = "Food-11"

initialize the base path to the *new* directory that will
contain
our images after computing the training and testing split
BASE_PATH = "dataset"

define the names of the training, testing, and validation
directories
TRAIN = "training"
TEST = "evaluation"
VAL = "validation"

initialize the list of class label names
CLASSES = ["Bread", "Dairy product", "Dessert", "Egg",
"Fried food",
"Meat", "Noodles/Pasta", "Rice", "Seafood", "Soup",
"Vegetable/Fruit"]

set the batch size when fine-tuning
BATCH_SIZE = 32

(continue)
set the batch size when fine-tuning
BATCH_SIZE = 32

initialize the label encoder file path and the output directory
to
where the extracted features (in CSV file format) will be stored
LE_PATH = os.path.sep.join(["output", "le.cpickle"])
BASE_CSV_PATH = "output"

set the path to the serialized model after training
MODEL_PATH = os.path.sep.join(["output", "food11.model"])

define the path to the output training history plots
UNFROZEN_PLOT_PATH = os.path.sep.join(["output", "unfrozen.png"])
WARMUP_PLOT_PATH = os.path.sep.join(["output", "warmup.png"])

17

Transfer Learning (13) – Fine-tuning : Actual Practice – Foods classification (2)

▪ build_dataset.py # import the necessary packages
from pyimagesearch import config
from imutils import paths
import shutil
import os

loop over the data splits
for split in (config.TRAIN, config.TEST, config.VAL):

grab all image paths in the current split
print("[INFO] processing '{} split'...".format(split))
p = os.path.sep.join([config.ORIG_INPUT_DATASET, split])
imagePaths = list(paths.list_images(p))

loop over the image paths
for imagePath in imagePaths:

extract class label from the filename
filename = imagePath.split(os.path.sep)[-1]
label = config.CLASSES[int(filename.split("_")[0])]

construct the path to the output directory
dirPath = os.path.sep.join([config.BASE_PATH, split, label])

if the output directory does not exist, create it
if not os.path.exists(dirPath):
os.makedirs(dirPath)

construct the path to the output image file and copy it
p = os.path.sep.join([dirPath, filename])
shutil.copy2(imagePath, p)

18

Transfer Learning (14) – Fine-tuning : Actual Practice – Foods classification (3)

▪ build_dataset.py

19

Transfer Learning (15) – Fine-tuning : Actual Practice – Foods classification (4)

▪ train.py(1)

set the matplotlib backend so figures can be saved in the
background
import matplotlib
matplotlib.use("Agg")

import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.applications import VGG16
from keras.layers.core import Dropout
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras.layers import Input
from keras.models import Model
from keras.optimizers import SGD
from sklearn.metrics import classification_report
from pyimagesearch import config
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import pickle
import os

(continue)

def plot_training(H, N, plotPath):
construct a plot that plots and saves the training history

plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"],
label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"],
label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"],
label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"],
label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(plotPath)

20

derive the paths to the training, validation, and
testing
directories
trainPath = os.path.sep.join([config.BASE_PATH,
config.TRAIN])
valPath = os.path.sep.join([config.BASE_PATH, config.VAL])
testPath = os.path.sep.join([config.BASE_PATH,
config.TEST])

determine the total number of image paths in training,
validation,
and testing directories
totalTrain = len(list(paths.list_images(trainPath)))
totalVal = len(list(paths.list_images(valPath)))
totalTest = len(list(paths.list_images(testPath)))

initialize the training data augmentation object
trainAug = ImageDataGenerator(

rotation_range=30,
zoom_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True,
fill_mode="nearest")

Transfer Learning (16) – Fine-tuning : Actual Practice – Foods classification (5)

▪ train.py (2)

initialize the validation/testing data augmentation object
#(which we'll be adding mean subtraction to)
valAug = ImageDataGenerator()

define the ImageNet mean subtraction (in RGB order) and set
the
the mean subtraction value for each of the data
augmentation
objects
mean = np.array([123.68, 116.779, 103.939], dtype="float32")
trainAug.mean = mean
valAug.mean = mean

initialize the training generator
trainGen = trainAug.flow_from_directory(

trainPath,
class_mode="categorical",
target_size=(224, 224),
color_mode="rgb",
shuffle=True,
batch_size=config.BATCH_SIZE)

21

Transfer Learning (17) – Fine-tuning : Actual Practice – Foods classification (6)

▪ train.py (3)

initialize the validation generator
valGen = valAug.flow_from_directory(

valPath,
class_mode="categorical",
target_size=(224, 224),
color_mode="rgb",
shuffle=False,
batch_size=config.BATCH_SIZE)

initialize the testing generator
testGen = valAug.flow_from_directory(

testPath,
class_mode="categorical",
target_size=(224, 224),
color_mode="rgb",
shuffle=False,
batch_size=config.BATCH_SIZE)

(continue)

load the VGG16 network, ensuring the head FC layer sets are left
off
baseModel = VGG16(weights="imagenet", include_top=False,
input_tensor=Input(shape=(224, 224, 3)))

construct the head of the model that will be placed on top of the
the base model
headModel = baseModel.output
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(512, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(len(config.CLASSES), activation="softmax")(headModel)

place the head FC model on top of the base model (this will become
the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)

loop over all layers in the base model and freeze them so they will
not be updated during the first training process
for layer in baseModel.layers:

layer.trainable = False

22

Transfer Learning (18) – Fine-tuning : Actual Practice – Foods classification (7)

▪ train.py (4)

initialize the validation generator
valGen = valAug.flow_from_directory(

valPath,
class_mode="categorical",
target_size=(224, 224),
color_mode="rgb",
shuffle=False,
batch_size=config.BATCH_SIZE)

initialize the testing generator
testGen = valAug.flow_from_directory(

testPath,
class_mode="categorical",
target_size=(224, 224),
color_mode="rgb",
shuffle=False,
batch_size=config.BATCH_SIZE)

(continue)

load the VGG16 network, ensuring the head FC layer sets are left
off
baseModel = VGG16(weights="imagenet", include_top=False,
input_tensor=Input(shape=(224, 224, 3)))

construct the head of the model that will be placed on top of the
the base model
headModel = baseModel.output
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(512, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(len(config.CLASSES), activation="softmax")(headModel)

place the head FC model on top of the base model (this will become
the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)

loop over all layers in the base model and freeze them so they will
not be updated during the first training process
for layer in baseModel.layers:

layer.trainable = False

23

Transfer Learning (19) – Fine-tuning : Actual Practice – Foods classification (8)

▪ train.py (5)

compile our model (this needs to be done after our setting
our
layers to being non-trainable
print("[INFO] compiling model...")
opt = SGD(lr=1e-4, momentum=0.9)
model.compile(loss="categorical_crossentropy", optimizer=opt,

metrics=["accuracy"])

train the head of the network for a few epochs (all other
layers
are frozen) -- this will allow the new FC layers to start
to become
initialized with actual "learned" values versus pure
random
print("[INFO] training head...")
H = model.fit_generator(

trainGen,
steps_per_epoch=totalTrain // config.BATCH_SIZE,
validation_data=valGen,
validation_steps=totalVal // config.BATCH_SIZE,
epochs=50)

reset the testing generator and evaluate the network
after
fine-tuning just the network head
print("[INFO] evaluating after fine-tuning network head...")
testGen.reset()
predIdxs = model.predict_generator(testGen,

steps=(totalTest // config.BATCH_SIZE) + 1)
predIdxs = np.argmax(predIdxs, axis=1)
print(classification_report(testGen.classes, predIdxs,

target_names=testGen.class_indices.keys()))
plot_training(H, 50, config.WARMUP_PLOT_PATH)

reset our data generators
trainGen.reset()
valGen.reset()

now that the head FC layers have been trained/initialized,
lets
unfreeze the final set of CONV layers and make them trainable
for layer in baseModel.layers[15:]:

layer.trainable = True

24

Transfer Learning (20) – Fine-tuning : Actual Practice – Foods classification (9)

▪ train.py (6)

loop over the layers in the model and show which ones are
trainable or not
for layer in baseModel.layers:

print("{}: {}".format(layer, layer.trainable))

for the changes to the model to take affect we need to
#recompile the model, this time using SGD with a *very*
small learning rate
print("[INFO] re-compiling model...")
opt = SGD(lr=1e-4, momentum=0.9)
model.compile(loss="categorical_crossentropy",

optimizer=opt,metrics=["accuracy"])

train the model again, this time fine-tuning *both* the
#final set of CONV layers along with our set of FC layers
H = model.fit_generator(

trainGen,
steps_per_epoch=totalTrain // config.BATCH_SIZE,
validation_data=valGen,
validation_steps=totalVal // config.BATCH_SIZE,
epochs=20)

reset the testing generator and then use our trained
model to make predictions on the data
print("[INFO] evaluating after fine-tuning network...")
testGen.reset()
predIdxs = model.predict_generator(testGen,

steps=(totalTest // config.BATCH_SIZE) + 1)
predIdxs = np.argmax(predIdxs, axis=1)
print(classification_report(testGen.classes, predIdxs,

target_names=testGen.class_indices.keys()))
plot_training(H, 20, config.UNFROZEN_PLOT_PATH)

serialize the model to disk
print("[INFO] serializing network...")
model.save(config.MODEL_PATH)

25

Transfer Learning (21) – Fine-tuning : Actual Practice – Foods classification (10)

▪ Execute result of “train.py”:

26

Transfer Learning (22) – Fine-tuning : Actual Practice – Foods classification (11)

▪ Evaluation module (predict.py) (1)

import the necessary packages
from keras.models import load_model
from pyimagesearch import config
import numpy as np
import argparse
import imutils
import cv2

construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", type=str, required=True,
help="path to our input image")
args = vars(ap.parse_args())

load the input image and then clone it so we can draw on it
later
image = cv2.imread(args["image"])
output = image.copy()
output = imutils.resize(output, width=400)

our model was trained on RGB ordered images but OpenCV
represents
images in BGR order, so swap the channels, and then resize to
224x224 (the input dimensions for VGG16)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))

convert the image to a floating point data type and perform
mean
subtraction
image = image.astype("float32")
mean = np.array([123.68, 116.779, 103.939][::1],

dtype="float32")
image -= mean

load the trained model from disk
print("[INFO] loading model...")
model = load_model(config.MODEL_PATH)

pass the image through the network to obtain our
predictions
preds = model.predict(np.expand_dims(image, axis=0))[0]
i = np.argmax(preds)
label = config.CLASSES[i]

draw the prediction on the output image
text = "{}: {:.2f}%".format(label, preds[i] * 100)
cv2.putText(output, text, (3, 20), cv2.FONT_HERSHEY_SIMPLEX,

0.5,(0, 255, 0), 2)

show the output image
cv2.imshow("Output", output)
cv2.waitKey(0)

27

Transfer Learning (23) – Fine-tuning : Actual Practice – Foods classification (12)

▪ Let’s run predict.py…!!!! And check on the verification results…..!!!!

Saved model

(BGKim) C:\Users\vicl\practices\cnn\TransferLearning\Fine-Tuning>python predict.py --image
dataset\evaluation\Seafood\8_102.jpg

28

Homewrok#2 Performance Comparison of Two Transfer learning schemes

❖ Content:

▪ With the same dataset (one dataset), we want to compare the classification accuracy.

• From two datasets, you can select one dataset

• Implement same output classifier in each scheme.

• Just training two scheme with one dataset

• Just check on the accuracy.

❖ Submission:

▪ Your technical report with your source code (compressed file)

▪ Due: in a week from now.

http://ivpl.sookmyung.ac.kr

Thank you for your attention.!!!
QnA

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29

