Adaptive Signal Processing and System Theory (\#2: The z-transform)

2023 Spring
Prof. Byung-Gyu Kim
Intelligent Vision Processing Lab. (IVPL)
http://ivpl.sookmyung.ac.kr
Dept. of IT Engineering, Sookmyung Women's University
E-mail: bg.kim@sookmyung.ac.kr

Contents

- Introduction of the z-Transform
- Relationship of Properties of Seq. to Its z-Transform
- Z-Transform for LTI system

4.265 Hack High Effeciency Video Coding

Contents

- Introduction of the z-Transform
- Relationship of Properties of Seq. to Its z-Transform
- Z-Transform for LTI system

4.265 Hayc High Effeciency Video Coding

Introduction

* z-Transform representation of a sequence
- Fourier transform does not converge for all sequences.
\Longrightarrow Generalization of Fourier Transform (FT)
- In analytical problems, the z-transform notation is often more convenient than FT notation.
* Fourier transform (FT)

$$
X\left(e^{j \omega}\right)=\sum x[n] e^{-j \omega n}
$$

* z-Transform

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad: \text { bilateral z-transform }
$$

where $z=$ a constant complex variable.

$$
x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(Z)
$$

- Unilateral z-transform

$$
\mathcal{X}(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

- In general, $z=r e^{j \omega} \quad$ (since z is complex value,)

$$
\begin{aligned}
X\left(r e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n}
\end{aligned}
$$

- Fourier Transform of product of the original $x[n]$ and r^{-n}
- If $r=1$, then FT of $x[n]$.

For unit circle in z-plane, we can evaluate $X[z]$ at points on the unit circle:
Fourier Transform for $0 \leq \omega \leq \pi$

* Region of Convergence (ROC)
- FT and z-transform do not converge for all sequences.
- For any seq., the set of values z for which the z-transform power converge is called "the region of convergence (ROC)".

If absolutely summable, FT converges to $\sim \sim \sim \sim$.

$$
|X(z)|<\infty \text { if } \sum_{n=-\infty}^{\infty}|x[n]||z|^{-n}<\infty
$$

From the above, the convergence depends on $|z|!!!$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad: \text { Power series or Laurent series }
$$

* Region of Convergence (ROC)

Figure 3.2 The region of convergence
(ROC) as a ring in the z-plane. For specific cases, the inner boundary can extend inward to the origin, and the ROC becomes a disc. For other cases, the outer boundary can extend outward to infinity.

* Poles and Zeros
- In case of z-transform,

$$
X(z)=\frac{P(z)}{Q(z)}
$$

where $P(z)$ and $Q(z)$ are polynomials in z.

- Poles: z value of $X(z)=0$.
- Zeros: z value of $X(z)=\infty$

Important relationships exists between the locations of poles of $X(z)$ and The ROC of the z-transform.

- Ex 3.1) signal $x[n]=a^{n} u[n]$

$$
X(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

For convergence,

$$
X(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}<\infty
$$

Then, $\quad X(z)=\frac{1}{1-a z^{-1}}$ for $\left|a z^{-1}\right|<1(|z|>|a|)$.

- Ex 3.3) sum of two exponential sequences

$$
\begin{aligned}
& x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n] \\
& \quad X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}
\end{aligned}
$$

For convergence of $X(z), \quad\left|\frac{1}{2} z^{-1}\right|<1$ and $\left|-\frac{1}{3} z^{-1}\right|<1$

$$
\therefore|z|>\frac{1}{2}
$$

(ROC can be plotted as the next...!!!)

- ROC of the previous slide

Figure 3.5 Pole-zero plot and region of convergence for the individual terms and the sum of terms in Examples 3.3 and 3.4. (a) $1 /\left(1-\frac{1}{2} z^{-1}\right),|z|>\frac{1}{2}$. (b) $1 /\left(1+\frac{1}{3} z^{-1}\right),|z|>\frac{1}{3}$. (c) $1 /\left(1-\frac{1}{2} z^{-1}\right)+1 /\left(1+\frac{1}{3} z^{-1}\right),|z|>\frac{1}{2}$.

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	$\frac{1}{1-a z^{-1}}$	All z except 0 (if $m>0$ (if $m<0)$ or
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
7. $n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
13. $\left\{\begin{array}{lll}a^{n}, 0 \leq n \leq N-1, \\ 0, ~ o t h e r w i s e\end{array}\right.$		

Contents

- Introduction of the z-Transform
- Relationship of Properties of Seq. to Its z-Transform
- Z-Transform for LTI system

Properties of the ROC for z-transform (1)

* Properties of the ROC
- Usually, the properties of the ROC depend on the nature of the signal....!!!
- Property 1 ~ 8

The Inverse z-Transform (1)

* Inverse z-transform
- Is represented as complex contour integral:

$$
x[n]=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

where C represents a closed contour within the ROC of the z-transform.

* Methods for Inverse z-transform
- Inspection Method
- By inspection certain transform pairs.
- For example,

$$
a^{n} u[n] \longleftrightarrow \frac{1}{1-a z_{1}^{-1}}, \text { where }|z|>|a|
$$

Then the inverse of $\quad X(z)=\frac{1}{1-\frac{1}{2} z^{-1}} \quad$ equals ?

The Inverse z-Transform (2)

- Partial Fraction Expansion

- Sometimes, $X(z)$ may not be given explicitly in an available table.

Let us assume that $X(z)=$ a ratio of polynomials like

$$
\begin{aligned}
X(z) & =\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \\
& =\frac{z^{N} \sum_{k=0}^{M} b_{k} z^{-k}}{z^{M} \sum_{k=0}^{N} a_{k} z^{-k}}
\end{aligned}
$$

- If $M>N$, then ($M-N$) poles at $z=0$.
- If $N>M$, then ($N-M$) zeros at $z=0$.
- Also,

$$
X(z)=\frac{b_{0}}{a_{0}} \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

where $c_{k}=$ nonzero zeros of $X(z), d_{k}=$ nonzero poles of $X(z)$

The Inverse z-Transform(3)

- Case 1) If $\mathrm{M}<\mathrm{N}$ and poles are all the 1 -st order, then

$$
\begin{aligned}
& \qquad \begin{array}{l}
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}} \\
\text { By multiplying } \quad\left(1-d_{k} z^{-1}\right) \text { and } \quad z=d_{k} \\
\therefore \quad A_{k}
\end{array} \begin{array}{l}
=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}
\end{array}
\end{aligned}
$$

- Ex 3.9) 2-nd order z-transform

$$
X(z)=\frac{1}{\left(1-\frac{1}{4} z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}|z|>\frac{1}{2}
$$

Let

$$
X(z)=\frac{A_{1}}{\left(1-\frac{1}{4} z^{-1}\right)}+\frac{A_{2}}{\left(1-\frac{1}{2} z^{-1}\right)} \quad|z|>\frac{1}{2}
$$

The Inverse z-Transform(4)

After computing A_1 and A_2,

$$
X(z)=\frac{-1}{\left(1-\frac{1}{4} z^{-1}\right)}+\frac{2}{\left(1-\frac{1}{2} z^{-1}\right)} \quad|z|>\frac{1}{2}
$$

From Table 3.1 and the linearity of z-transform,

$$
\therefore x[n]=2\left(\frac{1}{2}\right)^{n} u[n]-\left(\frac{1}{4}\right)^{n} u[n] .
$$

- In case of $M \geq N$, the complete partial fraction expression would be

$$
X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=0}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}
$$

Normal parts
Fraction parts

The Inverse z-Transform(5)

- Ex 3.10) Inverse by partial fraction

$$
X(z)=\frac{1+2 z^{-1}+z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}|z|>\frac{1}{2}
$$

Let $X(z)=B_{0}+\frac{A_{1}}{\left(1-\frac{1}{2} z^{-1}\right)}+\frac{A_{2}}{\left(1-2 z^{-1}\right)}|z|>\frac{1}{2}$

$$
\therefore B_{0}=2 \quad \text { (by direct division) }
$$

Then,

$$
X(z)=2+\frac{-1+5 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}
$$

Now for coefficient A_1 and A_2, by $A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}$

$$
\begin{aligned}
& \left.A_{1}=\left(2+\frac{-1+5 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}\right)\left(1-\frac{1}{2} z^{-1}\right) \right\rvert\, z=\frac{1}{2}=-9 \\
& A_{2}=8
\end{aligned}
$$

Therefore,

The Inverse z-Transform(6)

From Table 3.1,

$$
\begin{aligned}
& \therefore X(z)=2-\frac{9}{\left(1-\frac{1}{2} z^{-1}\right)}+\frac{8}{\left(1-z^{-1}\right)} \\
& 2 \longleftrightarrow 2 \delta[n], \\
& \frac{1}{1-\frac{1}{2} z^{-1}} \longleftrightarrow\left(\frac{1}{2}\right)^{n} u[n], \\
& \frac{1}{1-z^{-1}} \longleftrightarrow u[n],
\end{aligned}
$$

From the linearity of the z-transform,

$$
\therefore x[n]=2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]+8 u[n] .
$$

The Inverse z-Transform(7)

- Power Series Expansion

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\cdots+x[-2] z^{2}+x[-1] z+x[0]+x[1] z^{-1}+\cdots
\end{aligned}
$$

Ex 3.11) Finite-length Series
Suppose $X(z)=z^{2}\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)\left(1-z^{-1}\right)$,

$$
\begin{aligned}
& \therefore x[n]=\delta[n]-\frac{1}{2} \delta[n]-\delta[n]+\frac{1}{2} \delta[n-1] .
\end{aligned}
$$

It is very useful when $X(z)$ is the ratio of polynomials...!!!!!!
z-transform Properties (1)

* For LTI system,

$$
\begin{array}{ll}
x_{1}[n] \longleftrightarrow X_{1}(z), & R O C=R_{x_{1}} \\
x_{2}[n] \longleftrightarrow X_{2}(z), & R O C=R_{x_{2}}
\end{array}
$$

- Linearity

$$
a x_{1}[n]+b x_{2}[n] \longleftrightarrow a X_{1}(z)+b X_{2}(z), \text { ROC contains } R_{x_{1}} \cap R_{x_{2}} .
$$

- Time shifting

$$
x\left[n-n_{0}\right] \longleftrightarrow Z^{-n_{0}} X(z)
$$

- Multiplication by an Exponential Sequence

$$
z_{0}^{n} x[n] \longleftrightarrow X\left(z / z_{0}\right), \mathrm{ROC}=\left|z_{0}\right| R_{x}
$$

- Differentiation of $X(z)$

$$
n x[n] \longleftrightarrow-z \frac{X(z)}{d z}, \mathrm{ROC}=R_{x}
$$

- Conjugation of a Complex Sequence

$$
x^{*}[n] \longleftrightarrow X^{*}\left(z^{*}\right), \quad R O C=R_{x}
$$

- Time-Reversal

$$
x^{*}[-n] \longleftrightarrow X^{*}\left(1 / z^{*}\right), \quad R O C=\frac{1}{R_{x}}
$$

If $x[n]$ is real, then

$$
x[-n] \longleftrightarrow X(1 / z), \quad R O C=\frac{1}{R_{x}}
$$

- Convolution of Sequence

$$
x_{1}[n] * x_{2}[n] \longleftrightarrow X_{1}(z) X_{2}(z), \text { ROC contains } R_{x_{1}} \cap R_{x_{2}} .
$$

- Some z-transform properties
(Refer to Table 3.2...!!!!)

z-transform Properties (3)

Section Reference	Sequence	Transform	ROC
	$x[n]$	$X(z)$	R_{x}
	$x_{1}[n]$	$X_{1}(z)$	$R_{x_{1}}$
	$x_{2}[n]$	$X_{2}(z)$	$R_{x_{2}}$
3.4.1	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	Contains $R_{x_{1}} \cap R_{x_{2}}$
3.4.2	$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	R_{x}, except for the possible addition or deletion of the origin or ∞
3.4.3	$z_{0}^{n} x[n]$	$X\left(z / z_{0}\right)$	$\left\|z_{0}\right\| R_{x}$
3.4.4	$n x[n]$	$-z \frac{d X(z)}{d z}$	R_{x}, except for the possible addition or deletion of the origin or ∞
3.4.5	$x^{*}[n]$	$X^{*}\left(z^{*}\right)$	R_{x}
	$\operatorname{Re}(x[n])$	$\frac{1}{2}\left[X(z)+X^{*}\left(z^{*}\right)\right]$	Contains R_{x}
	$\mathcal{J} m\{x[n]\}$	$\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right]$	Contains R_{x}
3.4.6	$x^{*}[-n]$	$X^{*}\left(1 / z^{*}\right)$	$1 / R_{x}$
3.4.7	$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	Contains $R_{x_{1}} \cap R_{x_{2}}$
3.4.8	Initial-value theorem:		
	$x[n]=0, \quad n<0 \quad \lim _{z \rightarrow \infty} X(z)=x[0]$		

Contents

- Introduction of the z-Transform
- Relationship of Properties of Seq. to Its z-Transform
- Z-Transform for LTI system

4.265 Hays High Effeciency Video Coding

z-Transform and LTI systems (1)

* LTI systems

$$
\begin{aligned}
& y[n]=x[n] * h[n] \\
& Y(z)=H(z) X(z) \quad \therefore H(z)=\frac{Y(z)}{X(z)}: \frac{\text { system function (transfer function) of }}{\text { LTI system }}
\end{aligned}
$$

Ex 3.20) Convolution of ~

$$
\begin{aligned}
& \quad x[n]=A u[n], \quad h[n]=a^{n} u[n] \\
& H(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\frac{1}{1-a z^{-1}}, \quad|z|>|a| . \quad X(z)=\frac{A}{1-z^{-1}}, \quad|z|>1 . \\
& Y(z)=H(z) X(z)=
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{A}{\left(1-a z^{-1}\right)\left(1-z^{-1}\right)}, \\
= & \frac{A}{1-a}\left(\frac{1}{1-z^{-1}}-\frac{a}{1-a z^{-1}}\right),|z|>1 \\
& \text { Inverse of LT/ system } \\
& \therefore \quad y[n]=\frac{A}{1-a}\left(1-a^{n+1}\right) u[n] .
\end{aligned}
$$

* Some cases, LTI system function:

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \quad \sum_{k=0}^{M} b_{k} x[n-k]=\sum_{k=0}^{N} a_{k} y[n-k]
$$

The Unilateral z-Transform

* Unilateral or One-sided z-Transform

$$
\mathcal{X}(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

(PIz, read the details in pp. 164-166)

HW\#2

* In textbook, Chap. 3,
- Prob. 3.4, 3.7, 3.9, 3.17, 3.29
* Due day: ~ to the next week.

Thank you for your attention.!!! QnA

http://ivpl.sookmyung.ac.kr

