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Remind (1): Stationary Process and Models

 Stochastic (Random) Process

 A function of time, defined on some observation interval (sampling period (T) in the discrete-time).

 Strictly Stationary Process

 Partial Characterization of a Discrete-time Stochastic Process

For a time series 

◼ Mean-value of function of the process

where E() is the statistical expectation operator.

◼ Autocorrelation function

◼ Auto-covariance function
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Remind (2): Stationary Process and Models

 Stationary process in Wide Sense

◼ Condition: For       , 

 Mean Ergodic (in the sense of MSE)

◼ If the mean square value of error between       and     as 

 Correlation Ergodic

 Correlation Matrix of

 Properties of Correlation Matrix 

 How to estimate the parameters of sinusoid signal in the presence of additive noise.

 Yule-Walker Equation

 A system (set) of linear equations in AR model
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Stationary processes and Models (1): Stochastic Models  (1) 

 What is Model?

◼ Any hypothesis that may be applied to explain or describe the hidden laws that are 

supposed to govern or constrain the generation of physical data of interest. ➔ Yule (1927).

◼ In general, input-output relation for the stochastic model is linearly as

Discrete-time

Linear filter

Purely random 

Process      

Discrete-time 

stochastic process    

Present value of 

model output

Linear combination of 

past value of model output

Linear combination of 

present/past value of 

model input

White Gaussian noise Highly correlated observation
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Stationary processes and Models (2): Stochastic Models  (2) 

 Three Popular Types of Stochastic Models

◼ AR (autoregressive)   : Not use past input of the model.

◼ MA (moving average) : Not use past output of the model.

◼ ARMA (autoregressive-moving average): both are available.

 AR Models

For a time series 

In terms of        ,

Small error termLinear combination of 

the past values

AR parameters

Order of AR 

process
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Stationary processes and Models (3): Stochastic Models  (3) 

 For Usual Linear Regression Model, we can express as

Then 

◼ is regressed on the previous value of itself : “Autoregressive”

 Convolution Form of input sequence       and seq. of      like as,

By taking z-transform on both sides,
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Stationary processes and Models (4): Stochastic Models  (4) 

◼ AR process u[n] is

 Input: noise      is output. Transfer function                     (finite duration)

 Output: noise       is input. Transfer function                   (infinite duration) 

AR analyzer AR generator
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Stationary processes and Models (5): Stochastic Models  (5) 

 MA Models

◼ For the given input         , the output       is described by the difference equation:

 Output          is a form of weighted average with     .

 ARMA Models

◼ Has transfer function that contains both poles and zeros and model parameters of order  (M, 

K).

MA parameters

Order of MA 

process
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Stationary processes and Models (6): Stochastic Models  (6) 

ARMA model

AR generator
AR analyzer

MA model
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Stationary processes and Models (7): Stochastic Models  (7) : Yule-Walker Eq.

 Considerations

◼ In terms of computation, AR model is usually better easy. 

 A system (set) of linear equations → Yule-Walker equations

 ARMA/MA model: very complex to solve and so many nonlinear cases.  

 Yule-Walker

◼ How to define AR Process Model?

 AR coefficients

 The variance of the white noise 

For any AR process        , 
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Stationary processes and Models (8): Stochastic Models  (8) : Yule-Walker Eq.

By  multiplying                  and  taking expectation operator (E(-)), 

Then,

And

Here, let’s evaluate it for each l, then we have the following matrix form that has been as so famous 

Yule-Walker Equation:

0
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Stationary processes and Models (9): Stochastic Models  (8) : Yule-Walker Eq.

So we can solve this as if       is nonsingular, 

 The variance of the white noise:

Let l = 0, then   

AR coefficients
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Wiener Filters: Linear Optimum Filters (1)

 Linear Optimum Filtering: Problem Statement

◼ Filtering problem can be formulated as the general case of the complex-valued time series 

in terms of filter’s impulse response.

 Input:

 Filter: weight (coeff.) as impulse response

 Desired response     : signal of interest.

 Output: estimate of the desired output

 Error     : the difference bet. the desired response and the filter output.

◼ Goal : How to set or control weights of the filter to give the desired response?

Linear discrete-time

Filter                        
Input

Output

- +

Desired output

Estimation 

Error       
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Wiener Filters: Linear Optimum Filters (2)

◼ Main requirement: 

 Make          as smaller as possible in some statistical sense.

 Two restrictions:

• The filter is linear

• The filter output is discrete-time for implementing on the digital HW.

◼ Factors for Filter Design

 Whether the impulse response of the filter has finite or infinite duration.

 What kind of statistical criterion used for the optimization.

◼ What kinds of Cost Functions:

 Mean-square value of the estimation error.

 Expectation of the absolute value of the estimation error.

 Expectation of the third or higher order of ~ .

Cost function or index of performance
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Wiener Filters: Linear Optimum Filters (3)-Orthogonality

◼ How to Solve Mathematically the statistical Optimization Problem:

 Principle of orthogonality

 Error-performance surface on the filter’s coefficients

 Principle of Orthogonality

For any time series

◼ Assumption:

 Filter input and the desired response are jointly wide-sense stationary stochastic process.

◼ Filter output :

◼ Estimation error

To optimize the filter design, we choose to minimize the mean-square value of the estimation 

error as cost function. Then 
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Wiener Filters: Linear Optimum Filters (4)-Orthogonality

◼ Cost function:

Finally, the problem is to determine the operating conditions for which J attains its minimum 

value.

minimize J |

◼ How to obtain the optimum operating condition of the filter?

 Linear Filter is composed of tap-weights (                    ).

 Gradient operation:

• Partial derivative on the specified variable.

• Used in the context of finding the stationary points of a function of interest.

Filter operating condition     
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Wiener Filters: Linear Optimum Filters (5)-Orthogonality

◼ Simple examples of gradient operation

To find minimum point, we take 

partial derivative of           on the 

variable      and set to zero.

If we solve the above Eq., then we 

can find the optimum condition of   .
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Wiener Filters: Linear Optimum Filters (6)-Orthogonality

◼ General definition of gradient operation

Since        is complex value like 

We can define the gradient operator as the following:

Let’s apply this to the cost function, 

Similarly, we can find the optimum condition of  J  on the filter       as the result of the gradient set to 

zero.

Optimum in the MSE sense
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Wiener Filters: Linear Optimum Filters (7)-Orthogonality

Therefore, 

Then
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Wiener Filters: Linear Optimum Filters (8)-Orthogonality

Let         denote the special value of the estimation error that results when the filter operates in 

its optimum condition. Then 

◼ Principle of orthogonality 

 The estimation error         is orthogonal to each input sample that enters into the estimation of the 

desired response at time n.

◼ Corollary to the Principle of Orthogonality

 If we check on                 ,

If the filter is in the optimum condition,

This is basic procedure for testing whether linear filter is 

operating in its optimum condition.

Geometric representation of the relationship
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Wiener Filters: Linear Optimum Filters (9)- Minimum Mean-Square Error

 Minimum Mean-Square Error (MSE)

If the filter is in the optimum condition,

Then

◼ Normalized MSE: 

Since                          ,

Both of these parameters are 

assumed to be of zero mean
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Wiener Filters: Linear Optimum Filters (10)-Wiener-Hopf Equations (1)

 Wiener-Hopf Equations

If the filter is in the optimum condition,

Then

◼ Auto correlation function:

◼ Cross correlation function: 

Cross correlation functionAutocorrelation function

Wiener-Hopf Equation
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In Next Class?

 We will talk about the remained part of Wiener Filters and Linear Prediction.

◼ Solution of Wiener-Hopf filter.

◼ Error-performance surface.

◼ Introduction of the linear prediction.
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HW#4

❖ Solve the following Problems:

▪ (Chap. 5) P. 2, P. 3 , P. 4, 

❖ Due date: ~ to the next week.
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Thank you for your attention.!!!
QnA


