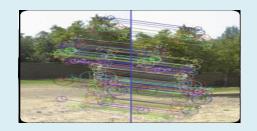
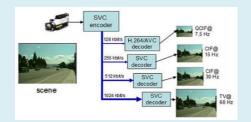


Adaptive System and Signal Processing Theory (#8: Wiener Filter and Linear Prediction)

2023 Spring

Prof. Byung-Gyu Kim Intelligent Vision Processing Lab. (IVPL) http://ivpl.sookmyung.ac.kr Dept. of IT Engineering, Sookmyung Women's University E-mail: bg.kim@ivpl.sookmyung.ac.kr



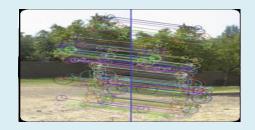


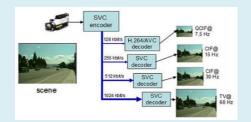
Contents

• Summary of the Previous Lecture

.....

- Wiener Filter
- Linear Prediction
- Levinson-Durbin Algorithm





Contents

• Summary of the Previous Lecture

.....

- Wiener Filter
- Linear Prediction
- Levinson-Durbin Algorithm

Remind (1): Stationary Process and Models and Wiener Filter

Stochastic Models

- Model: Any hypothesis that may be applied to explain or describe the hidden laws that are supposed to govern or constrain the generation of physical data of interest. → Yule (1927).
- Three Popular Types of Stochastic Models
 - AR (autoregressive) : Not use past input of the model.
 - MA (moving average) : Not use past output of the model.
 - ARMA (autoregressive-moving average): both are available.

Considerations

- In terms of computation, AR model is usually better easy.
 - A system (set) of linear equations \rightarrow Yule-Walker equations
 - ARMA/MA model: very complex to solve and so many nonlinear cases.

Remind (2): Stationary Process and Models and Wiener Filter

• Yule-Walker Eq.

For any AR process u[n],

$$a_0^*r(l) + a_1^*r(l-1) + a_2^*r(l-2) + \dots + a_M^*r(l-M) = 0,$$

$$\therefore r(l) = -a_1^*r(l-1) - a_2^*r(l-2) - \dots - a_M^*r(l-M).$$

Matrix Form:

$$\begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^*(1) & r(0) & \cdots & r(M-2) \\ \vdots & & \ddots & \vdots \\ r^*(M-1) & r^*(M-2) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{bmatrix} = \begin{bmatrix} r^*(1) \\ r^*(2) \\ \vdots \\ r^*(M) \end{bmatrix},$$

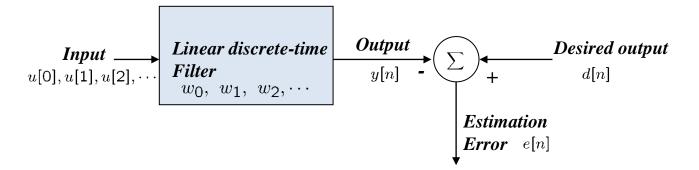
$$\mathbf{R}\mathbf{w} = \mathbf{r}$$

$$\therefore \mathbf{w} = \mathbf{R}^{-1}\mathbf{r}$$

Remind (3): Stationary Process and Models and Wiener Filter

• Linear Optimum Filtering

- Main requirement:
 - Make e[n] as smaller as possible in some statistical sense.



- Factors for Filter Design
 - ▶ Whether the impulse response of the filter has finite or infinite duration.
 - ▶ What kind of statistical criterion used for the optimization.

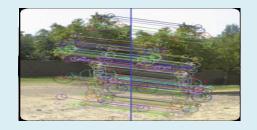
Cost function or index of performance

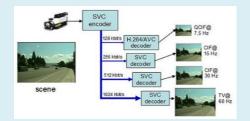
Remind (4): Stationary Process and Models and Wiener Filter

- What kinds of Cost Functions:
 - Mean-square value of the estimation error.
 - Expectation of the absolute value of the estimation error.
 - Expectation of the third or higher order of ~ .
- How to Solve Mathematically the statistical Optimization Problem:
 - Principle of orthogonality.
 - Gradient operation:
 - Used in the context of finding the stationary points of a function of interest.
 - ▶ Input and error signal $\therefore E[u[n-k]e_o^*[n]] = 0, k = 0, 1, \cdots$
 - Output and error signal $\therefore E[y_o[n]e_o^*[n]] = 0.$
 - Minimum Mean-Square Error (MSE)

$$\therefore J_{min} = \sigma_d^2 - \sigma_{\widehat{d}}^2$$
 in MSE sense.

- ▶ Winer-Hopf Equation : $\therefore \sum_{i=0}^{\infty} w_{oi}r(i-k) = p(-k)$, for $k = 0, 1, \cdots$. Error-performance surface on the filter's coefficients.





Contents

• Summary of the Previous Lecture

.....

• Wiener Filter

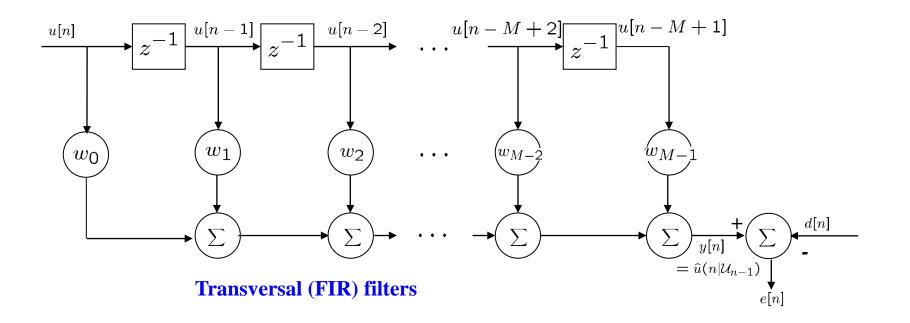
- Linear Prediction
- Levinson-Durbin Algorithm

Wiener Filters: Linear Optimum Filters (11): Wiener-Hopf Equations (2)

 Solution of Wiener-Hopf Equations for Linear Transversal Filter If the filter is in the optimum condition,

:
$$\sum_{i=0}^{M} w_{oi} r(i-k) = p(-k)$$
, for $k = 0, 1, \cdots, M-1$.

Then we can expand this equation for all finite number *M* like as:



$$\begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^*(1) & r(0) & \cdots & r(M-2) \\ \vdots & & \ddots & \vdots \\ r^*(M-1) & r^*(M-2) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{bmatrix} = \begin{bmatrix} p(0) \\ p(-1) \\ \vdots \\ p(1-M) \end{bmatrix},$$

where
$$\mathbf{R} = E[\mathbf{u}(n)\mathbf{u}^{H}(n)]$$
 and $\mathbf{p} = E[\mathbf{u}(n)d(n)]$.
 $\mathbf{R}\mathbf{w}_{o} = \mathbf{p}$

If **R** is nonsingular,

$$\mathbf{w}_o = \mathbf{R}^{-1}\mathbf{p}$$

- ► The Correlation matrix **R**,
- ► The cross-correlation matrix **P**.

Wiener Filters: Linear Optimum Filters (13) : Error-Performance Surface (1)

Cost Function

Therefore,

Dependent on the weights of the linear filter.

 $J = F(\mathbf{w}).$

From the original definition of J,

Wiener Filters: Linear Optimum Filters (14) : Error-Performance Surface (2)

Bottom point (minimum condition):

By using the gradient operator for the defined cost function,

$$\nabla_k J = \frac{\partial J}{\partial a_k} + j \frac{\partial J}{\partial b_k} = 0, \ k = 0, 1, 2, \cdots$$

$$\int_{M-1} \text{since } w_k = a_k + j b_k, \ k = 0, 1, 2, \cdots$$

$$\nabla_k J = -2p(-k) + 2 \sum_{i=0}^{M-1} w_i r(i-k) = 0. \ k = 0, 1, 2, \cdots$$

For the optimum point:

$$\therefore \sum_{i=0}^{M-1} w_i r(i-k) = p(-k), \ k = 0, 1, 2, \cdots$$
Wiener-Hopf Equation

Wiener Filters: Linear Optimum Filters (15) : Error-Performance Surface (3)

Minimum-mean squared error:

Let $\hat{d}[n|\mathcal{U}_n]$ denote the estimate of the desired response d[n].

$$\hat{d}[n|\mathcal{U}_n] = \sum_{k=0}^{M-1} w_{ok}^* u[n-k]$$
$$= \mathbf{w}_o^H \mathbf{u}(n).$$

To evaluate the variance of $\hat{d}[n|\mathcal{U}_n]$,

$$\sigma_{\hat{d}}^{2} = E\left[\hat{d}[n|\mathcal{U}_{n}]\hat{d}^{*}[n|\mathcal{U}_{n}]\right],$$

$$= E\left[\mathbf{w}_{o}^{H}\mathbf{u}(n)\mathbf{u}^{H}(n)\mathbf{w}_{o}\right],$$

$$= \mathbf{w}_{o}^{H}E\left[\mathbf{u}(n)\mathbf{u}^{H}(n)\right]\mathbf{w}_{o},$$

$$= \mathbf{w}_{o}^{H}\mathbf{R}\mathbf{w}_{o}, \quad \longleftarrow \quad \mathbf{R}\mathbf{w}_{o} = \mathbf{p}$$

Then

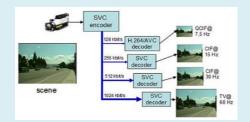
$$\sigma_{\hat{d}}^2 = \mathbf{w}_o^H \mathbf{p},$$
$$= \mathbf{p}^H \mathbf{w}_o,$$

Winer Filters: Linear Optimum Filters (16) : Error-Performance Surface (4)

• Minimum-mean squared error:

$$J_{min} = \sigma_d^2 - \sigma_{\hat{d}}^2,$$

= $\sigma_d^2 - \mathbf{p}^H \mathbf{w}_o,$
= $\sigma_d^2 - \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p}.$



Contents

• Summary of the Previous Lecture

.....

• Wiener Filter

Linear Prediction

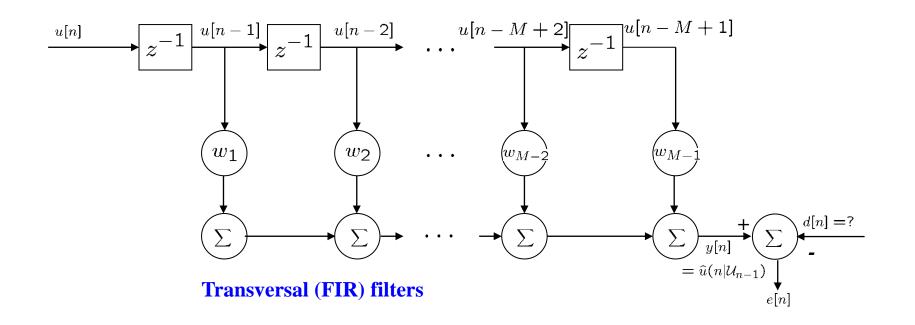
Levinson-Durbin Algorithm

- What is "Prediction"?
 - One of the most celebrated problems.
 - Want to know a future value of a stationary discrete-time stochastic process, given a set of past samples of the process.
- Some Notations
 - \mathcal{U}_{n-1} : M-dim. Space spanned by the samples $u[n-1], u[n-2], \dots, u[n-M]$.
 - $\hat{u}(n|\mathcal{U}_{n-1})$: predicted value of u[n] given the past samples.
- Linear Prediction
 - As linear combination of the given samples $u[n-1], u[n-2], \dots, u[n-M]$.
 - One step prediction: Forward/Backward linear prediction (FLP/BLP)
 - ▶ One step forward prediction: $u[n-1], u[n-2], \dots, u[n-M] \longrightarrow \hat{u}(n|\mathcal{U}_{n-1})$
 - One step backward prediction: $u[n], u[n-1], \dots, u[n-(M-1)] \longrightarrow \hat{u}(n-M|\mathcal{U}_n)$

Linear Prediction (2): Forward Linear Prediction

- The Purpose of This Section
 - To optimize the design of the FLP/BLP using Winer Filter Theory in the sense of MSE.
- Forward Linear Prediction

Let's start with transversal filter of the order of M and M tap-weights with wide-sense stationary stochastic process of zero mean.



$$\begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r^{*}(1) & r(0) & \cdots & r(M-2) \\ \vdots & & \ddots & \vdots \\ r^{*}(M-1) & r^{*}(M-2) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{M} \end{bmatrix} = \begin{bmatrix} r^{*}(1) \\ r^{*}(2) \\ \vdots \\ r^{*}(M) \end{bmatrix},$$

$\mathbf{R}\mathbf{w} = \mathbf{r}$

So we can solve this as if \mathbf{R} is nonsingular,

$$\mathbf{w} = \mathbf{R}^{-1}\mathbf{r}$$

$$AR \ coefficients$$

The variance of the white noise:

Let I = 0, then
$$E[\nu[n]u^*[n]] = E[\sum_{k=0}^{M} a_k^*u[n-k]u * [n]]$$

 $\therefore \sum_{k=0}^{M} a_k^*r(k) = \sigma_{\nu}^2.$

Linear Prediction (3): Forward Linear Prediction

The predicted value

ППГ

$$\widehat{u}(n|\mathcal{U}_{n-1}) = \sum_{k=1}^{M} w_{f,k} u[n-k].$$

Since the desired signal is the current input,

• Forward prediction error: $f_M(n) = d[n] - \hat{u}(n|\mathcal{U}_{n-1}) = u[n] - \hat{u}(n|\mathcal{U}_{n-1})$.

To change into the form of Winer-Hopf Eq.,

$$\mathbf{w}_{f} = [w_{f1}, w_{f2}, \cdots, w_{fM}]^{T}$$

$$\mathbf{R} = E \left[\mathbf{u}[n-1] \mathbf{u}^{H}[n-1] \right]$$

$$\mathbf{p} = E \left[\mathbf{u}[n-1] d^{*}[n] \right]$$

$$\mathbf{R} \mathbf{w}_{f} = \mathbf{p} \quad \text{or}$$

$$\mathbf{R} \mathbf{w}_{f} = \mathbf{r}$$

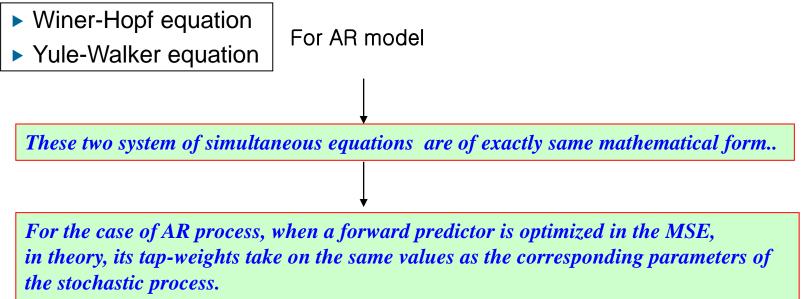
- •

Linear Prediction (4): Forward Linear Prediction

■ Forward prediction-error power (*P_M*)

$$P_M = r(0) - \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p}, \quad \longleftarrow \quad = \sigma_d^2 - \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p}.$$
$$= r(0) - \mathbf{r}^H \mathbf{w}_f.$$

Relationship betw. Linear prediction and AR modeling



Linear Prediction (5): Forward Prediction-Error Filter(1)

- Forward prediction-error filter
 - Output: forward prediction-error (FPE)
 - Forward prediction-error

$$f_M(n) = d[n] - \hat{u}(n|\mathcal{U}_{n-1}) = u[n] - \hat{u}(n|\mathcal{U}_{n-1}). \quad \bullet \qquad \hat{u}(n|\mathcal{U}_{n-1}) = \sum_{k=1}^M w_{f,k}u[n-k]$$

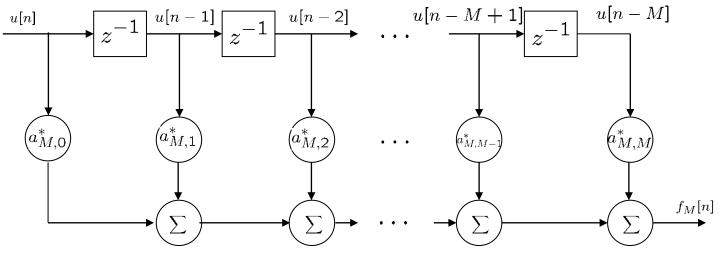
Let $a_{M,k}(k = 0, 1, ..., M)$ denote the tap-weights of new filter as the following:

$$a_{M,k} = \begin{cases} 1, & k = 0, \\ -w_{f,k}, & k = 1, 2, .., M. \end{cases}$$

Then,

:.
$$f_M(n) = \sum_{k=0}^M a_{M,k}^* u[n-k].$$

Linear Prediction (6): Forward Prediction-Error Filter(2)



FPE filters

• Augmented Winer-Hopf Equations for Forward Prediction Using Eqs. of $P_M = r(0) - \mathbf{r}^H \mathbf{w}_f$ and $\mathbf{Rw}_f = \mathbf{r}$,

$$\begin{bmatrix} r(0) & \mathbf{r}^H \\ \mathbf{r} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ -\mathbf{w}_f \end{bmatrix} = \begin{bmatrix} P_M \\ \mathbf{0} \end{bmatrix}$$

Linear Prediction (7): Forward Prediction-Error Filter(3)

From the Eq., if we let $\begin{vmatrix} 1 \\ -w_f \end{vmatrix} = a_M$ then we can rewrite as a system of (M+1) linear equations:

$$\begin{bmatrix} M \\ \sum_{l=0}^{M} a_{M,l} r[l-i] = \begin{cases} P_M, & i = 0, \\ 0, & i = 1, 2, \cdots, M. \end{cases}$$
$$\begin{bmatrix} r(0) & \mathbf{r}^H \\ \mathbf{r} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ -\mathbf{w}_f \end{bmatrix} = \begin{bmatrix} P_M \\ \mathbf{0} \end{bmatrix}$$

Augmented Winer-Hopf equations for forward prediction-error filter

or

Linear Prediction (8): Backward Linear Prediction (1)

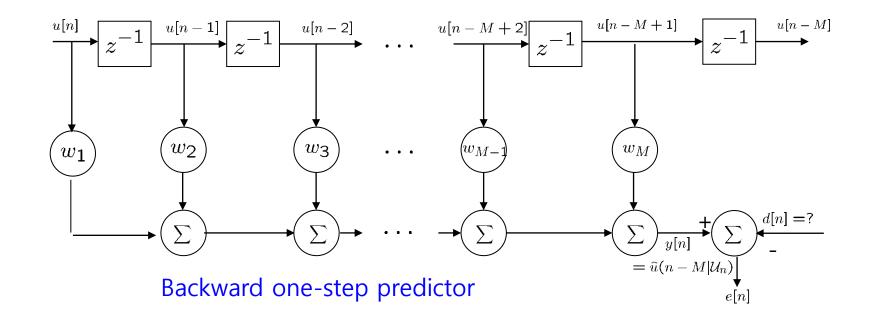
Backward Linear Prediction

For the given time series $u[n], u[n-1], \dots, u[n-(M-1)] \longrightarrow \widehat{u}(n-M|\mathcal{U}_n)$

• How to make a prediction of u(n-M) ?

Let U_n denote M-dim. Space spanned by $u[n], u[n-1], \dots, u[n-M+1],$

• Prediction value:
$$\hat{u}(n-M|\mathcal{U}_n) = \sum_{k=1}^{M} w_{b,k}^* u[n-k+1].$$



Linear Prediction (9): Backward Linear Prediction (2)

- The desired signal: d[n] = u[n M]
- The prediction error: $b_M(n) = u[n M] \hat{u}(n M|\mathcal{U}_n)$.

Let P_M denote the minimum mean-square prediction error,

$$P_M = E\left[|b_M(n)|^2\right] = E\left[b_M(n)b_M^*(n)\right]$$

Herein, $w_b =$ the optimum tap-weight vector of the backward prediction. To solve the Winer-Hopf equation for w_b , we need

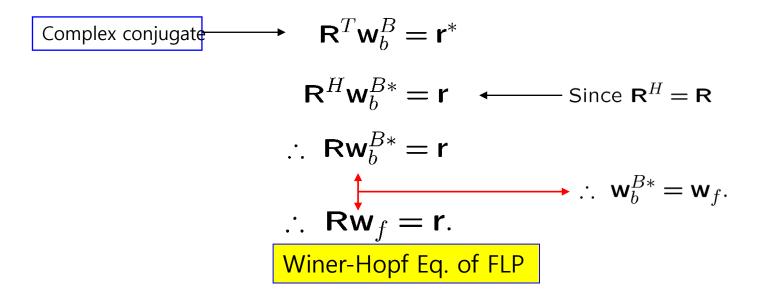
- Correlation matrix
- Cross-correlation matrix
- The variance of u[n-M] = r(0). (Since assumed to zero mean.)

$$\mathbf{R}\mathbf{w}_b = \mathbf{p} \quad \text{or} \quad \mathbf{R}\mathbf{w}_b = \mathbf{r}^{B*}$$

and
$$P_M = r(0) - \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p} = r(0) - \mathbf{r}^{BT} \mathbf{w}_b.$$

Linear Prediction (10): Backward Linear Prediction (3)

- Relationship betw. Backward and Forward predictors
 - In terms of **r** in Winer-Hopf Eqs,
 - It's elements are arranged in backward.
 - They are complex conjugated.
 - Aspect of tap-weights: With $\mathbf{R}\mathbf{w}_b = \mathbf{r}^{B*}$,



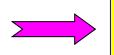
Linear Prediction (11): Backward Linear Prediction (4)

• Aspect of Ensemble-averaged error power:

With
$$P_M = r(0) - \mathbf{r}^{BT} \mathbf{w}_b$$
. reordering
 $P_M = r(0) - \mathbf{r}^T \mathbf{w}_b^B$. Complex conjugate
 $P_M = r(0) - \mathbf{r}^T \mathbf{w}_b^{B*}$,
 $= r(0) - \mathbf{r}^H \mathbf{w}_b^{B*}$.

If we compare with that of the FLP case,

Error power of FLP
$$\longrightarrow P_M = r(0) - \mathbf{r}^H \mathbf{w}_f$$
.
 $P_M = r(0) - \mathbf{r}^H \mathbf{w}_b^{B*}$.
 $\therefore \mathbf{w}_b^{B*} = \mathbf{w}_f$.



We may modify a backward predictor into a forward predictor by reversing the sequence in which its tap-weights are positioned and also complex-conjugating them.

Linear Prediction (12): Backward Prediction-Error Filter(1)

- Backward prediction-error filter
 - Output: backward prediction-error (FPE)
 - Backward prediction-error

$$b_M(n) = d[n] - \hat{u}(n|\mathcal{U}_n) = u[n-M] - \hat{u}(n|\mathcal{U}_n). \longleftarrow \hat{u}(n|\mathcal{U}_n) = \sum_{k=1}^M w_{b,k}^* u[n-k+1]$$

Let $c^*_{M,k}(k=0,1,...,M)$ denote the tap-weights of new filter as the following:

$$c_{M,k}^* = \begin{cases} 1, & k = M, \\ -w_{b,k+1}^*, & k = 0, 1, .., M - 1. \end{cases}$$

Then,

:.
$$b_M(n) = \sum_{k=0}^M c_{M,k}^* u[n-k].$$

Linear Prediction (13): Backward Prediction-Error Filter(2)

• In aspect of tap-weights of the forward prediction-error filter, we can express as:

$$w_{b,M-k+1}^* = w_{f,k}$$
 or $w_{b,k} = w_{f,M-k+1}^*$ $k = 1, \cdots, M$.

Then, we can get the following:

$$c_{M,k} = \begin{cases} 1, & k = M, \\ -w_{f,M-k}^*, & k = 0, 1, .., M - 1. \end{cases}$$

Therefore, if
$$c_{M,k} = a^*_{M,M-k}$$
 $(k = 0, 1, ..., M)$,

$$\therefore b_M(n) = \sum_{k=0}^M a_{M,M-k} u[n-k].$$

BP filter can be obtained by reversing the sequence in which its tap-weights are positioned and also complex-conjugating them of FP filter.

Linear Prediction (14): Backward Prediction-Error Filter(3)

• Augmented Winer-Hopf Equations for Backward Prediction Using Eqs. of $P_M = r(0) - \mathbf{r}^H \mathbf{w}_b^{B*}$ and $\mathbf{R} \mathbf{w}_b = \mathbf{r}^{B*}(-\mathbf{R} \mathbf{w}_b + \mathbf{r}^{B*} = \mathbf{0})$,

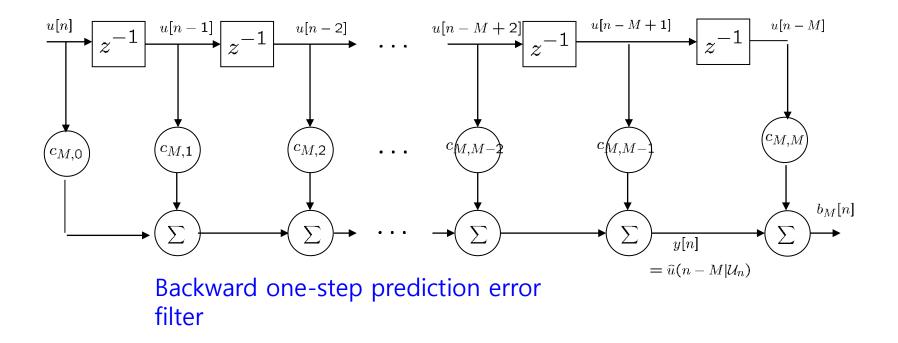
$$-\begin{bmatrix} \mathbf{R} & \mathbf{r}^{B*} \\ \mathbf{r}^{BT} & r(\mathbf{0}) \end{bmatrix} \begin{bmatrix} -\mathbf{w}_b \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ P_M \end{bmatrix}$$

From the Eq., if we let $\begin{bmatrix} -\mathbf{w}_b \\ 1 \end{bmatrix} = \mathbf{a}_M$ then we can rewrite as a system of (M+1) linear equations:

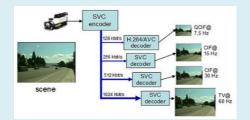
$$---\sum_{l=0}^{M} a_{M,M-l} r[l-i] = \begin{cases} P_M, & i = M, \\ 0, & i = 1, 2, \cdots, M-1. \end{cases}$$

Augmented Winer-Hopf equations for backward prediction-error filter

Linear Prediction (15): Backward Prediction-Error Filter(4)



- Levinson-Durbin Algorithm
 - Direct method for computing the prediction-error filter coeffs. and error power(P_M) using the augmented Wiener-Hopf equation.
 - Recursion in nature.



Contents

- Summary of the Previous Lecture
- Wiener Filter
- Linear Prediction
- Levinson-Durbin Algorithm

.....

Linear Prediction (16): Levinson-Durbin Algorithm (1)

Notation

- a_m : tap weight vector of FPE filter with the order of m ((m+1)x1).
- \mathbf{a}_m^{B*} : tap weight vector of BPE filter with the order of m ((m+1)x1).
- a_{m-1} : tap weight vector of FPE filter with the order of m-1 (mx1).
- \mathbf{a}_{m-1}^{B*} : tap weight vector of BPE filter with the order of m-1 (mx1).
- Then Levinson-Durbin recursion may be stated as:
 - The ordered update of the tap-weight vector of FPE filter as,

 $a_{m,l} = a_{m-1,l} + \kappa_m a_{m-1,m-l}^*$ for $l = 0, 1, \cdots, m$.

where $a_{m,l}$ is the I-th tap weight of forward prediction-error filter of order m and

 $a_{m-1,0} = 0$, $a_{m-1,m} = 0$, and κ_m is a constant.

• The ordered update of the tap-weight vector of BPE filter as,

 $a_{m,m-l}^* = a_{m-1,m-l}^* + \kappa_m^* a_{m-1,l}$ for $l = 0, 1, \dots, m$.

where $a_{m,m-l}^*$ is the I-th tap weight of backward prediction-error filter of order m and others are same.

Linear Prediction (17): Levinson-Durbin Algorithm (2)

Error Power Recursion

$$P_m = P_{m-1}(1 - |\kappa_m|^2).$$
here $\kappa_m = a_{m,m}.$
Reflection coefficient

- As the order m of the prediction-error filter increases, the corresponding value of the prediction-error power P_M normally decreases or else remains the same.
- For the order of zero (M = 0), $P_0 = r(0)$.

W

- Application of the Levinson-Durbin algorithm
 - The main goal is to get filter coefficients and prediction-error power.
 - When we have explicit knowledge of the autocorrelation function of the input process: In actual, we can estimate by means of the time-average formula,

$$\hat{r}(k) = \frac{1}{N} \sum_{n=1+k}^{N} u[n]u * [n-k], \quad k = 0, 1, \cdots, M.$$

where N is the total length of the input time series, with N > M.

Linear Prediction (18): Levinson-Durbin Algorithm (3)

With
$$\{r(0), r(1), r(2), \dots, r(M)\},\$$

compute $\Delta_{m-1} = \sum_{l=0}^{m-1} r(l-m)a_{m-1,l},$
 $P_M = P_{m-1}(1 - |\kappa_m|^2).$
Recursion: m=0 $P_0 = r(0), \quad \Delta_0 = r^*(1).$
m=M Computation stop.

– When we know the reflection coefficients (κ_m) and the autocorrelation function r(0) for a lag zero. Then we only need the pair of relations:

$$a_{m,l} = a_{m-1,l} + \kappa_m a_{m-1,m-l}^*$$
 for $l = 0, 1, \cdots, m$.
 $P_M = P_{m-1}(1 - |\kappa_m|^2).$

Plz, see an Example 2 on p. 260 for illustrating the second method.

Linear Prediction (19): Inverse Levinson-Durbin Algorithm (1)

- Inverse Levinson-Durbin Algorithm
 - When we need to compute κ_m , given the tap-weights of the filter.
 - Inverse recursion:

With

$$a_{m,l} = a_{m-1,l} + \kappa_m a_{m-1,m-l}^*$$
 for $l = 0, 1, \cdots, m$.

and

$$a_{m,m-l}^* = a_{m-1,m-l}^* + \kappa_m^* a_{m-1,l}$$
 for $l = 0, 1, \dots, m$,

$$\longrightarrow \begin{bmatrix} \mathbf{1} & \kappa_m \\ \kappa_m^* & \mathbf{1} \end{bmatrix} \begin{bmatrix} a_{m-1,l} \\ a_{m-1,m-l}^* \end{bmatrix} = \begin{bmatrix} a_{m-1,l} \\ a_{m,m-l}^* \end{bmatrix}$$

where the order $m = 1, 2, 3, \cdots, M$.

$$a_{m-1,l} = \frac{a_{m-l} - \kappa_m a_{m,m-l}^*}{1 - |\kappa_m|^2}, \quad \longleftarrow \quad \text{Since } \kappa_m = a_{m,m},$$
$$= \frac{a_{m-l} - a_{m,m} a_{m,m-l}^*}{1 - |a_{m,m}|^2}.$$

Linear Prediction (20): Inverse Levinson-Durbin Algorithm (2)

We can compute

 $\kappa_m = a_{m,m}.$

Plz, see an Example 3 on p. 261 for illustrating the second method.

In Next Class?

- We will talk about the Kalman Filter.
 - Introduction to Kalman filter (if possible).

HW#5- Linear Prediction

- Solve the following Problems:
 - (Chap. 6) P. 4, P. 6, P. 11
- ✤ Due date: ~ to the next week.

Thank you for your attention.!!! QnA

http://ivpl.sookmyung.ac.kr