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Remind (1): Stationary Process and Models and Wiener Filter

 Stochastic Models

◼ Model: Any hypothesis that may be applied to explain or describe the hidden laws that are 

supposed to govern or constrain the generation of physical data of interest. ➔ Yule (1927).

 Three Popular Types of Stochastic Models

◼ AR (autoregressive) : Not use past input of the model.

◼ MA (moving average) : Not use past output of the model.

◼ ARMA (autoregressive-moving average): both are available.

 Considerations

◼ In terms of computation, AR model is usually better easy. 

 A system (set) of linear equations → Yule-Walker equations

 ARMA/MA model: very complex to solve and so many nonlinear cases.
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Remind (2): Stationary Process and Models and Wiener Filter

 Yule-Walker Eq.

For any AR process       , 

Matrix Form:



6

Remind (3): Stationary Process and Models and Wiener Filter

 Linear Optimum Filtering

◼ Main requirement: 

 Make       as smaller as possible in some statistical sense.

◼ Factors for Filter Design

 Whether the impulse response of the filter has finite or infinite duration.

 What kind of statistical criterion used for the optimization.

Linear discrete-time

Filter                        
Input

Output

- +

Desired output

Estimation 

Error       

Cost function or index of performance
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Remind (4): Stationary Process and Models and Wiener Filter

◼ What kinds of Cost Functions:

 Mean-square value of the estimation error.

 Expectation of the absolute value of the estimation error.

 Expectation of the third or higher order of ~ .

 How to Solve Mathematically the statistical Optimization Problem:

◼ Principle of orthogonality.

 Gradient operation:

• Used in the context of finding the stationary points of a function of interest.

 Input and error signal

 Output and error signal

 Minimum Mean-Square Error (MSE)

 Winer-Hopf Equation : 

◼ Error-performance surface on the filter’s coefficients.
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Wiener Filters: Linear Optimum Filters (11) : Wiener-Hopf Equations (2)

 Solution of Wiener-Hopf Equations for Linear Transversal Filter

If the filter is in the optimum condition,

Then we can expand this equation for all finite number M like as:

Transversal (FIR) filters

+

-



10

Wiener Filters: Linear Optimum Filters (12) : Wiener-Hopf Equations (3)

where                                     and                                .  

If      is nonsingular,

 The Correlation matrix     ,

 The cross-correlation matrix       .
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Wiener Filters: Linear Optimum Filters (13) : Error-Performance Surface (1)

 Cost Function

◼ Dependent on the weights of the linear filter.

From the original definition of J,

Therefore,
(M+1) dim. Surface: error-performance surface
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Wiener Filters: Linear Optimum Filters (14) : Error-Performance Surface (2)

◼ Bottom point (minimum condition):

By using the gradient operator for the defined cost function,

For the optimum point:

Wiener-Hopf Equation
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Wiener Filters: Linear Optimum Filters (15) : Error-Performance Surface (3)

◼ Minimum-mean squared error:

Let            denote the estimate of the desired response       .

To evaluate the variance of             ,

Then
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Winer Filters: Linear Optimum Filters (16) : Error-Performance Surface (4)

◼ Minimum-mean squared error:
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Linear Prediction (1) (Chap. 6)

 What is “Prediction”?

◼ One of the most celebrated problems.

◼ Want to know a future value of a stationary discrete-time stochastic process, given a set of 

past samples of the process.

 Some Notations

◼ : M-dim. Space spanned by the samples 

◼ : predicted value of         given the past samples.

 Linear Prediction

◼ As linear combination of the given samples

◼ One step prediction: Forward/Backward linear prediction (FLP/BLP)

 One step forward prediction:

 One step backward prediction:
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Linear Prediction (2): Forward Linear Prediction

 The Purpose of This Section

◼ To optimize the design of the FLP/BLP using Winer Filter Theory in the sense of MSE.

 Forward Linear Prediction

Let’s start with transversal filter of the order of M  and M tap-weights with wide-sense 

stationary stochastic process of zero mean.     

Transversal (FIR) filters

+

-
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Stationary processes and Models (9): Stochastic Models  (8) : Yule-Walker Eq.

So we can solve this as if       is nonsingular, 

 The variance of the white noise:

Let l = 0, then   

AR coefficients
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Linear Prediction (3): Forward Linear Prediction

◼ The predicted value

Since the desired signal is the current input,

◼ Forward prediction error: 

To change into the form of Winer-Hopf Eq.,
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Linear Prediction (4): Forward Linear Prediction

◼ Forward prediction-error power (     )

◼ Relationship betw. Linear prediction and AR modeling

 Winer-Hopf equation

 Yule-Walker equation
For AR model

These two system of simultaneous equations  are of exactly same mathematical form..

For the case of AR process, when a forward predictor is optimized in the MSE,

in theory, its tap-weights take on the same values as the corresponding parameters of 

the stochastic process.
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Linear Prediction (5):  Forward Prediction-Error Filter(1)

◼ Forward prediction-error filter

 Output: forward prediction-error (FPE)

 Forward prediction-error

Let                             denote the tap-weights of new filter as the following:

Then,
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Linear Prediction (6): Forward Prediction-Error Filter(2)

◼ Augmented Winer-Hopf Equations for Forward Prediction

Using Eqs. of                                and               ,  

FPE filters
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Linear Prediction (7):  Forward Prediction-Error Filter(3)

From the Eq., if we let                    then we can rewrite as a system of (M+1) linear equations: 

or

Augmented Winer-Hopf equations for

forward prediction-error filter
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Linear Prediction (8): Backward Linear Prediction (1)

❖ Backward Linear Prediction

For the given time series                                             

▪ How to make a prediction of               ?

Let         denote  M-dim. Space spanned by

▪ Prediction value: 

Backward one-step predictor

+
-



25

Linear Prediction (9): Backward Linear Prediction (2)

▪ The desired signal: 

▪ The prediction error: 

Let         denote  the minimum mean-square prediction error, 

Herein,         the optimum tap-weight vector of the backward prediction. To solve the 
Winer-Hopf equation for       we need

• Correlation matrix

• Cross-correlation matrix

• The variance of                                (Since assumed to zero mean.)

and 
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Linear Prediction (10): Backward Linear Prediction (3)

▪ Relationship betw. Backward and Forward predictors

In terms of       in Winer-Hopf Eqs, 

– It’s elements are arranged in backward.

– They are complex conjugated.

• Aspect of tap-weights: With 

Complex conjugate

Winer-Hopf Eq. of FLP
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Linear Prediction (11): Backward Linear Prediction (4)

• Aspect of Ensemble-averaged error power: 

With 

If we compare with that of the FLP case,

reordering

Error power of FLP

Complex conjugate

We may modify a backward predictor into a forward predictor by 
reversing the sequence  in which its tap-weights are positioned and 
also complex-conjugating them.
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Linear Prediction (12): Backward Prediction-Error Filter(1)

▪ Backward prediction-error filter

• Output: backward prediction-error (FPE)

• Backward prediction-error

Let                            denote the tap-weights of new filter as the following:

Then,
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Linear Prediction (13):  Backward Prediction-Error Filter(2)

▪ In aspect of tap-weights of the forward prediction-error filter, we can express as:

Then, we can get the following:

Therefore,  if

BP filter can be obtained by reversing the sequence  in which its tap-weights 
are positioned and also complex-conjugating them of FP filter.
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Linear Prediction (14):  Backward Prediction-Error Filter(3)

▪ Augmented Winer-Hopf Equations for Backward Prediction

Using Eqs. of                             and                  

From the Eq., if we let                    then we can rewrite as a system of (M+1) linear 
equations:

Augmented Winer-Hopf equations for
backward prediction-error filter
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Linear Prediction (15):  Backward Prediction-Error Filter(4)

❖ Levinson-Durbin Algorithm

▪ Direct method for computing the prediction-error filter coeffs. and error power(     ) 
using the augmented Wiener-Hopf equation.

▪ Recursion in nature.

Backward one-step prediction error 
filter
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Linear Prediction (16):  Levinson-Durbin Algorithm (1)

❖ Notation

▪ : tap weight vector of FPE filter with the order of m ((m+1)x1).

▪ : tap weight vector of BPE filter with the order of m ((m+1)x1).

▪ : tap weight vector of FPE filter with the order of m-1 (mx1).

▪ : tap weight vector of BPE filter with the order of m-1 (mx1).

❖ Then Levinson-Durbin recursion may be stated as:

▪ The ordered update of the tap-weight vector of FPE filter as,

where        is the l-th tap weight of forward prediction-error filter of order m and                                                                   

and        is a constant.

▪ The ordered update of the tap-weight vector of BPE filter as,

where            is the l-th tap weight of backward prediction-error filter of order m and 
others are same.
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Linear Prediction (17): Levinson-Durbin Algorithm (2)

❖ Error Power Recursion

where        

▪ As the order m of the prediction-error filter increases, the corresponding value of the 
prediction-error power       normally decreases or else remains the same.

▪ For the order of zero             ,  

❖ Application of the Levinson-Durbin algorithm

▪ The main goal is to get filter coefficients and prediction-error power.

• When we have explicit knowledge of the autocorrelation function of the input process: In 
actual, we can estimate by means of the time-average formula,

where N is the total length of the input time series, with N>>M. 

Reflection coefficient
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Linear Prediction (18): Levinson-Durbin Algorithm (3)

With

compute

Recursion: m=0

m=M      Computation stop.

– When we know the reflection coefficients (     )   and  the autocorrelation function        for a lag zero. 
Then we only need the pair of relations:

Plz, see an Example 2 on p. 260 for illustrating the second method.
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Linear Prediction (19):  Inverse Levinson-Durbin Algorithm (1)

❖ Inverse Levinson-Durbin Algorithm

▪ When we need to compute       ,  given the tap-weights of the filter.

▪ Inverse recursion:

With 

and 

where the order 
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Linear Prediction (20):  Inverse Levinson-Durbin Algorithm (2)

We can compute 

Plz, see an Example 3 on p. 261 for illustrating the second method.
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In Next Class?

 We will talk about the Kalman Filter.

◼ Introduction to Kalman filter (if possible).
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HW#5- Linear Prediction

❖ Solve the following Problems:

▪ (Chap. 6) P. 4, P. 6 , P. 11 

❖ Due date: ~ to the next week.
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Thank you for your attention.!!!
QnA
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